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ABSTRACT

v

/

Methods for predicting the: perfornmnee, noise, weight, and cost of propellers for

advanced general aviation aircraft, of the 1980 time period were developed and computer-

izcd. A propeller sensitivity study based on the computer program is presented for five

representative general aviation aircraft, Conceptual design studies are included for

three propellers selected from the sensitivity studies to check the weight and cost esti-

n_!ing procedures. Problem areas exist in the methodology defined and follow-on
studies are recommended. A listing of the computer program is presented.
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_DVANCtLD C':::,EIL_L AVIATION PROPELLER STUDY

SUMMARY

The general object of this study sponsored by the Advanced Concepts and Mission

Division of NASA under Contract No. NAS2-5885 dated 30 January 1970 is to investigate

the effects on the performance, noise, weight and cost of advanced general aviation air-

craft propellers as influenced by the application of teclmology anticipated in the 1980

time period. The study covers a very broad spectrum of aircraft implied by the power-

plant size range of 100-1500 SI-IP specified in the RFPA-15989 (HK-5) dated 18 Decem-

ber 1969. Thus, in order to provide a meaningful study within the scope intended by

Advanced Concepts and Missions Division, A.C.M.D., as an initial step, the Contractor

classified into five categories the general aviation aircraft envisioned by A. C. M. D.

Then, a representative aircraft from each category was selected and its flight profile

defined by fills Contractor and A. C. M. D. in sufficient detail to establish propeller re-

quirements. Analytical criteria for predicting the performance, noise, weight and cost

projected to the 1980 time period were established and programmed in FORTRAN V for

the UNIVAC 1108 high speed digital computer. With the aircraft and propeller require-

ments defined and the computer pro_ram established," a comprehensive sensitivity study

of the propeller geometric and performance parameters was undertaken for an aircraft

configuration selected from each of the five categories. It was generally shown that to

reach the 65-75 PNdB noise level, it will be necessary to increase propeller diameters

and number of blades significantly and to operate at very low tipspeeds. This will result

in not only dimensionally less compatible geometries than those of present aircraft, but

also in heavier and more costly propellers. The increased weight of the propeller alone

can apparently be offset significantly by utilizing lightweight, high-speed reciprocating

engines with appropriate reduction gearing. Yet, it is obvious that, depending on its

severity, the anti-noise legislation expected by the 1980 time period could have a major

impact on general aviation effecting not only propeller manufacturers but engine and air-

craft manufacturers as well.

Detailed hardware conceptual design studies were made for three propeller configu-

rations selected by A. C. M.D. Conceptual drawings, weight and cost have been estab-

lished for each propeller. These carefully established weight and cost figures, based

upon complete conceptual designs for the aforementioned three aircraft categories,

showed only fair agreement with the weight and cost generalization included in the com-

puter program. Discrepancies for one of the propeller desiglls were sufficiently large

to conclude that further effort needs to be undertaken to establish more precise weight

and cost generalizations for quiet, slow turning propellers.
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An attractive alternative to the large, quiet propellers was indicated in the study of

other concepts. This is the Prop-Fan concept which is a small diameter multiblade,

variable pitch ducted fan coupled to high speed reciprocating engines without the speed

I! reduction gearing. On the basis of a brief study of the Ce,_"_sna 210J aircraft, this con-

cept can generally meet both the low noise objectives of this study and performance re-
¢

_:qui.rements of t_is aircraft with compatible geometry and some reduction in total propul-

sion weight. Although considerably more work is required, the initial study strongly in-

;dicates that this new concept would be particularly attractive for mu!.ti-engine aircraft.

,Moreover the concept appears to have most of the favorable characteristics of the turbo-

:fan, i.e. compactness and high-speed capability at less expense since modification of

.existing high-speed reciprocating engines may be utilized,
t

i _inally a major contribution of this study is the new methodology which WaS derived

;to predictt propeller aerod_lamic performance. This methodology was utilized in the

sensitivity studies, and it is intended that the reader of this repoz_ will have sufficient

data t_ permit similar propeller studies for any general aviation aircraft. A complete
l_stk_g of the computer program with detailed instruction) on i_ use are include(] All

,t!_c. (::_rves _m.d e,_tJatio:,,s for the analytical methods .h_ch_dcd il_ !he computer pr(_-:_ram
are p_-esented ",vJth instructioi)s of usage in lieu of the ,,.o.nput_i,_ a •

.1
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INTRODUCTION

J

Aviation forecasts for the ne_ ten to fifteen year time period, indicate continued

steady growth of general aviation. The attainment of this forecasted growth and even a

more rapid expansion is dependent upon the continued improvement in the safety, utility,

performance and cost of general aviation aircraft.

t Acoustic improvement is a goal which may be of incre_sing importance since noise
t "

pollution has become a serious concern to almost every community in the country. The

effect of increasing numbers of general airerafl; operating from landing strips close to

populated areas will further aggravate the problem. Consequently, the general aviation

industry may be required to significantly reduce the noise levels of current and future

aircraft. Thus, to insure the forecasted grouch of general aviation, the noise problem

must be seriously considered along with improvements in the other areas mentioned

above.

General aviation is a heterogeneous category covering a H civil aviation except the

certified commercial air carriers. The category fi_c!udes a wide range of aircraft from

small sh_gle place private airplanes to multiph_ce, multiengine aircraR utilized by the

air taxi operators, businesses and third tier air carriers. Generally the category in-

cludes aircraft of gross weights up to 12, 500 pouuds. " The projected ....... '_:Ow u.1 of this

classification even by experts in the field has been difficult c.'ue to the large variety and

application of the aircraft included and its dependence on various economic factors.

However, the forecast by the Federal Aviation Administration (ref. 1, 2) is probably as

accurate as is available. This agency's forecast on general aviation gro_h is impres-

sive by the number of aircraft included and is sumn_arized be tow.

From a current base of about 114,000 active aircraR, it is expec_:ed that this fleet

will increase to over 214, 000 units by 1980. Single engine, piston aircraft currently

number about 96,500 with an expected ten year growth to over 170, 000 aircraft. Their

portion of the fleet is currently nearly 85 percent with only a slight decrease in this

percentage predicted by 1980. The number of multiengine piston aircraft is forecast to

about double from approximately 13,500 to 26, 500 by 1980. The growth in turbine

engine powered aircraft is expected to undergo the most spectacular grov,¢h from about

1300 today to over 7800 aircraft over the coming decade. Most of these latter aircraft

will be turboprop with the turbofans beginning to make a significant slmwing. Currently

these engines are being installed only on the larger aircraft in this category. The

growth of turbofan aircraft is dependent almost entirely on the ability of the engine man-

ufacturers to develop low cost, low noise, reliable engines. New technology and hard-

ware development will be required before economically feasible turbofan engines could

become serious competitors to the advanced reciprocating engines for application across

the general aviation aircraft spectrum.



i •

i

From the above summary of the project: t gro_h of general aviation, it is apparent

fl_at most of these aircraft, even into the 1980 time period, will be propeller driven

utilizing prinmrily reciprocathlg engines with turbine engines coming on as their eco-

nomAcs improve. Thus, it is obvious that the aircraft improvements in the areas men-
tioned above must be matched by parallel improvements in propeller technolo_y and

hardware. Accordingly, this study has been undertaken to provide some visibility into

the performance, noise, weight and cost characteristics of advanced general aviation

propellers of the 1980 time period as influenced by anticipated re.fiction on noise.

i

The study involves the derivation of appropriate propeller performance, noise,

weigh i and cos_ criteria incorporated into a computer program to permit sensitivity
studids, of these factors to be made for advance propeller configurations designed for

general aircraft of the 1980 time period. These analytical criteria have been establish-

ed utilizing existing performance and noise prediction methodology combined with the

wei_h_and cost criteria developed from the results of the mechanical design, material,
and manufacturing technique studies and the market survey accomplished under this con-
tract

r_

f

j.J"

4



4

. .'. -,

L

ii

0 -

.'...

AF

b

B

BMEP

C

C1

CL D

CL i

i

I
i

Cp

CP E

CPEE

CPEC

CT

CT E

CTEE

Cw

D

dB

E

EPNL

:'_ :: [.,: :_! BOLS AND ABBREVIATIONS

propeller blade activity factor,

.. 1.0

100,16000 ;15(b)

x 3 dx

Advanced Concepts and Missions Division Office of Advanced Research

and Tectmology.

blade section width, ft

number of blades

piston engine brake mean effective pressure

average O. E. hi. propeller cost for a no. of units/year, $/lb

single unit O.E.M. propeller cost, $/lb

bl'_.desect._ol;de_dgn li__co:-,fficient

propeller blade integrated design lift.coefficient, 4

1o0

/
• 15

CLD x 3 dx

power coefficient, SH__P .¢_o/___.P1_
2N 3 D 5

effective power coefficient., Cp x PAF

effective powe': coeffic!_i:, Cp x PAl:' x PF C-

effective Cp used in defining compressibility correction,

Cp x PAF x PBL

I.514 T (D o/O )
thrust coefficient,

N 2 D 4

effective thrust coefficient, C T x TAF

effective thrust coefficient, C T x TAF x TFcL i

weight of propeller counterweight, pounds

propeller diameter, ft

decibel, 0.0002 dynes/cm 2 (reference value)

empirical cost factor -_

effective perceived noise level
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LF 1
M
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N ,

O.E.M.

PAF

PBL

PCLi

PFCLi

PNdB

PNL

PNLT

PP

Q

R

r

r/c

cost faetor based on quantity

degrees Fahre_leit

compressibility correction factor (fig. 9)

labor time, hrs

maximum blade section thickness

101.4 VK

advance ratio, N D

constant based on singl_ unit cos_

cop.staRt propeller weight multiplier

learning curve factor Ibr no, of u'a"_,ts/year

learning c_rve factor for a single I:nit

free stream Mach r:umber

propeller critical Math number (fig. 8)

propeller speed, rpm

original equipment rr;anufacturer

power coefficient adjus:tment (fig. _0

number of blades correction used in defining compressibility

correction (fig. 8)

Cp depende.r_cy of CLi adjustment for Cp (fig. 11)

J dependency of CLi adjustment for Cp (fig. 10)

units of perceived noise, dB

perceived noise level, PNdB

tone - corrected PNL, dB

cost of purchased parts and raw material, $

propeller torque, ft-lb

blade radius at propeller tip, ft

radius at blade element, ft

rate of climb, fpm
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TAF

TC L

TF C

T.O.

Vcl

VK

VS

W

IW T

X

.y

Z

B 3/4 '_

,y

D

Do

shaft horsepower

overall sound pressure level, dB

, propeller thrust, pounds

thrust coefficient adjustment (fig. 7)

total activity factor, AF x number of blades

C T dependency of CLi adjustment for CT (fig. 12)

J dependency of CLi adjustment for CT (fig. 10)

take-off

climb velocity, mph

free stream velocity, knots

take-off stall velocity, mph

gearbox weight, lbs

propeller weight, lbs

fraction of propeller tip radius, r/R

labor rate, $/hr

LF
learning curve factor ratio, LF---'I

propeller blade angle at 3/4 radius

propeller efficiency, _p J

minimum climb angle = tan -1 (1/12)

density, lb sec2/ft4

density at sea level standard day = 0.002378
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AIRCRAFT CLASSIFICATION

Categorization of General Aviation

The task of classif3"ingany large array of items in a significantnumber of groups,

is dependent on the particular characteristic(s)of the items chosen as the basis for the

classification. For this study, the Contractor categorized general aviation aircraft into

five basic groups on the basis of number of seats as the prime characteristic with pro-

peller complexity, installedpower, gross weight, cruise airspeed and number of engines

as secondary characteristics. From the extensive aircraft listingsin aviation periodi-

cals (ref. 3, 4), from reports (ref. 1, 2) available to the Contractor, and from consul-

tationwith several knowledgeable persons in this fieldincluding the Deputy Transporta-

tion Commissioner, Bureau of Aeronautics for the State of Connecticut, the aircraft

classifications presented in Table I were selected by the Contractor as representing the

prime aircraft groups upon which this study would be based. It is recognized that gen-

eral aviation aircraft could be classified on the basis of other criteria resulting in dif-

ferent categories with more or fewer groups. For examph_, agricultural aircraft do not

fit in any of the proposed groupings and would represent a sixth category. Moreover, a

clear cut demarcation be_veen classifications is not always obvious among the wide

variety of aircraft included in general aviation. However, the suggested classifications

are deemed sufficient to permit a complete and inclusive study of pro_ellers for general
aviation aircraft. The classifications were reviewed and approved by A. C. M. D.

Q

Selection of Representative Aircraft for Five Classifications

An initial presentation meeting was held on 15 July, 1970 at Hamilton Standard with

Mr. Mark Waters of A. C. M.D. and Mr. Michael Comberiate of NASA HeadquaI_ers at-ten-

ding. At that time, the following representative aircrafts from each aircraft classifica-

tion (Table I) were selected for detail study.

Aircraft Classification Propeller Tyl_e Representative Aircraft

I. Single Engine, Fixed Gear Fixed Pitch Piper Cherokee

H. Single Engine, Retractable Constant Speed

Gear, IFR Equipment

Cessna Centurion 210J

mo Light Twin, Retractable

Gear, IFR Equipment

J

_J

Constant Speed, Beech Baron 55

Full Feather,

Deicing

9



IV. Medium Twins, Retractable
Gear, IFR Equipment

Propel]er Type

Constant Speed,
Full Feather,

Deicing

R__. resentative Aircraft

Beech Queen Air

Vo Heavy Twins , Retractable

Gear, IFR Equipment

Constant Speed,

Full Feather,

Deicing, Reverse

Deitavilland - Twin Ot_er

Definition of Mission Profiles and Propeller Requirements

For this study, the mission profile for each aircraft listed above was defined to in-

clude take-off, climb, single engine climb and ma._imum cruise operating conditions for

which the corresponding propeller requirements were established. Thus, a more or

less standardized performance base was nmintained for the sensitivity study on each air-

craft category.

Approximate aircraft performancecharacteristics and propeller requirements were

established from several sources. The take-off and climb conditions and the correspond-

ing propeller requirements for each aircraf_ were defined by ?_h:. Mark Waters of

A.C.M.D. with the exception that Cessna provided the pertinent information for their

latest version of the Cessna 210J. These conditions were obtained based on the follow-
:ingassumptions:

1, Take-off, T.O.

A. T.O. lift coefficient = 0.8 (maximum lift coefficient ) computed for "flap

down" at stall speed, VS.

B. Coefficient of rolling friction = 0.02 (rubber on cement)

2. Climb-all engines operative

A. Minimum climb velocity (Vcl) = 1.5 (Vs)

!

B. Minimum climb angle, _/, = tan -1 (1/12)

C. Rate of climb at sea level, r/c, > 300 fpm

l_ote: A and B define r/c = Vcl sin _. If this r/c > 300 fpm, it is used as the
minimum.

i /

• ,_J"



3. Climb.multi engine with one engine inoperative at 5000'.

A. r/e -_ 0.02 (_rS)2 "

B.. Minimum Vcl = 1.3 (VS)

i Thc one engine out climb at 5000' is included for aircraft of Categories Ill, IV, and
V._

i The cruise conditions were obtained from Jane's All the Worlds Aircraft, 1969-1970

(ref. 5). The maximum cruise condition was selected as representative of cruise oper-

ation. These basic operating conditions and propeller requirements for each aircraft

are tabulated on Table If. Due to the assumptions made in these calculations, these

requirements may differ from those of the actual" aircraft.

TECHNOLOGY IDENTIFICATION

Design and performance criteria covering performance, noise, weight, and cost of

general aviation propeller systems in the 1980 time period have been derived and incor-

porated into a computer program utilized for the sensitivity study. Each technology
area associated with these criteria has been identified and are discussed in the following

text.

Propeller Performance Generalization

Propeller aerodynamics and analytical methods have generally attained a high level

of refinement permitting the aerodynamic design of highly efficient propellers for most

applications. The forward flight method for conventional and multi-bladed propellers

is based on the work of Goldstein (ref. 6, 7) which is an advanced form of the blade
element theory. Goldstein combined the vortex theory and the solution for the radial

distribution of circulation for a finite number of blades. The blade is considered as a

rotating airfoil with each element following a helical path and reacting as an ordinary

airfoil section. The aerodynamic forces on a series of radial blade elements are cal-

culated and then integrated over the blade radius to establish the total forces. An ana-

lytical method based on this theory and utilizing two-dimensional airfoil data has been

developed and continually refined which permits the performance of any arbitrary pro-

peller configuration operating at any imposed flight condition to be accurately calculated.

I
!
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Due to the extremely complex ana.!ytical model including a strong wake contraction

_equired to theoretically define propeller per_brmane_ at zero airspe_l, this basic

Goldstein theory has not yet been extended to cover the static case. An approximation

of the wake contraction has been included i_} the Goldstein theory with fair success.

However, recently a new propeller vortex theory has been derived for the static case

which includes an accurate wake representation obtained experimentally, Although the

method is currently limited to lightly loaded VTOL and STOL propellers, it is expected

that:this method will be extended to cover the higher lo_dcd propellers tlpplicable to

general aviation aircraft within the next year or so. Thus, for thi_ contract study, the
statlc performance has been computed based on the Go]dstein theory with the aforemen-

tioned slipstream, contraction adjustment.

Two-dimensional airfoil data from approximately 25 wind-tunnel programs have

been utilized by this contractor to generate complete a_._d reliable sets of basic airfoil

data for use in conjunction with the calculation procedure outlined abavc.

This method has been pro,_:rammed for use in hi,_,h_,,,,.,.,-,-_.a_,.,,, digit_._l_ computers. With

this computer program, propellers can be readily d,:,_,;o-_c_d,....,,,..... _. and the ne_:ibrmanee, can be

predicted for the complete propeller operat_.ng spectru_;_o

During the preliminary design phase, the airframe m.anut'acture:c l_,as need to study

propeller performance characteristics over the entire :t.ircraft fJ..i_{h*,s-peers'urn. Hamil-

ton Standard has recognized this need for ra4;i.d].y evah_.;rti_{_ propc,]!er performahce

characteristics and consequen{ly has published generalized perfornmnee calculation

nl_thods based on the aforementioned theory for aircraft propellers operating at static

and in-flight eondJtioas. These methcds incorporate e, _;erires of l:,erfor_mnee maps each

accurately defining the propeller performa_me for a broad spectrum af propeller geo-

metric configurations over the complete range of poteutird operaiip.g coa.ditions. By

providing such nmps for a systematic variation of each x)-_ajor prop_.i!er shape parameter

(number of blades, activity factor, and integrated denign_ fir coeificient), simple inter-

polation between chal"is will define perfornmnce for ar, y desired propeller configuration.

The "Red" book (ref. 8) has been generated for conventional propellers aimed prinmrily

" at turboprop eng2ne application, the "Blue" book (ref. 9) for shrouded propeller perfor-

mance estimation, and the 'Wghite" book (ref. i0) for variable camber propeller applica-
tions.

Performance Method. - Although these aerodynamic methods do exist and have been

used in support of this study program, a new method was developed and computerized
specifically for this general aviation aircraft propeller study which pern_its the simul-

taneous evaluation of performance, noise, weight and cost for a wide range of propeller

geometries. This method is the basis of the sensitivity study described later in the text

and is discussed in detail below. It is to be noted that the performance predicted by

this method is for the isolated propeller since no single body blockage effect could be

generalized to cover the wide variety of aircraft included in general aviation.

/
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The family of propellers used for this generalization was selected on the basis of
blade shapeswkich prior study had shownto be most favorable for minimum weight, low
noise characteristics and goodperformance for general aviation application. The plan-
forms for 80to 200activity factor are shownon figure 1, the corresponding thickness
ratios on figure 2, the twist distribution on figure 3, and the camber distribution for the
selected integrated design lift coefficient of 0.5 is shownon figure 4. For low drag
characteristics, the NACA Series 16airfoil sections have beenused on the outer portion
of the blade and the NACA Series 64 sections have beenincluded for the thick shank sec-
tions.

The horsepower, thrust, propeller rotational speed, velocity and diameter are in-
cluded in the non-dimensional form of power coefficient, Cp, thrust coefficient, CT, and
advanceratio, J defined as follows:

Cp =
SHP (Po/P) 1011

2N 3 D 5

1.514 x 106 T(Po/O)
CT = N2 D 4

J

I01.4 VK

ND
where:

SItP- shaft horsepower
L
i

0o/0 - ratio of density at sea level standard day to density for a specific operating
condition

N - propeller speed, rpm

D - propeller diameter, ft.

T - propeller thrust, pounds

V K - forward speed velocity, knots

./
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It was decided to present propeller performance in terms of thrust coefficient in-

stead of efficiency as used in the propeller performance h_ndbooks described previously

to make the method more adaptable for computerization. Furthermore, the operating

conditions can be defined with the thrust given and the corresponding horsepower com-

puted as well as with the horsepower given and the corresponding thrust calculated.

Propeller blade angle, B3/4 lm.s been included so that the method can bc used for pre-
dicting the performance of flied pitch and two-position propellers as well as constant

speed propellers.

Base curves have been defined in this non-dimensional fo_m presenting the perfor-

mance of 2, 4, 6 and 8 bladed propellers referenced to an activity factor of 150. In or-

der to minimize the number of curves and consequently the complexity of the computer

program, the terms effective power coefficient, CPE and effective thrust coefficient,

CTE have been introduced into these curves. These terms incorporate adjustment fac-

tors for the effects of variation in blade activity factor and integrated design lift coeffi-

cient. The activity factor adjustment factor is given for 2, 4, 6, and 8 bladed propellers,

but the integrated design lift coefficient adjustment factor Js given for a 4-bladed propel-

ler only. The adjustment factors are discussed later in the text. Thus, the base curves

while referenced to a basic activity factor and integrated design lift coefficient are ap-

plicable to the complete range of these shape parameters covered in this study. This

performance generalization format is shown for 2-bladed propellers referenced to 150

activity factor and 0.5 integrated design lift coefficient in figures 5 and 6 for the effec-

tive power coefficient chart and the effective thrust coefficient chart, respectively. Sim-

ilar plots for 4, 6 and 8-bladed propellers together with a sample calculation are pre-

sented in APPENDIX A.

:The ranges of effective power and thrust coefficients were selected to span peak

thrust and minimum power at each advance ratio as shown in figures 5 and 6. However,

in the cases where windmilling operation is possible, minimum effective power coeffi-

cient is taken to be zero, although engine out drag torque will result in some small neg-

ative power. It is to be noted that a curve defining the condition where the propeller is

stalled over the inner 50% of the blades has been included on these generalizations. As

will be explained in more detail in the section on Noise Generalization, test data have

indicated that no significant reductions in perceived noise level, PNL, can be obtained

by tipspeed reductions if the propeller becomes greater than 50% stalled. Thus, it is

recommended that propellers be selected so as to operate to the left of the indicated 50%

stall line for the critical noise condition.

As indicated Previously, to minimize the number of curves and consequently the

complexity of the computer program, a study was made to investigate the feasibility of

obtaining adjustment factors to both power and thrust coefficients to account for the ef-

fects of activity factor, number of blades, and integrated design lift coefficient. Adjust-

ment factors for propeller activity factor have been successfully defined using 150 activ-

ity factor as the base. On figure 7 are presented curves for the power coefficient

14j_
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l_adjustment, PAF and the thrust coefficient adjustment, TAF. It is to be noted that the

:factors for advance ratio 3 - 0 differ from those for J>_ 0.5. A straight line interpolation

is used to obtain the adjustment factors for 0.0 < J < O. 5. The effective power and thrust
coefficients are defined as follows:

CPE (AF) = CPE (150) x PAF

CTE (AF) = CTE (].50) x TAF

Such an adjustment was originally derived for the number of blades parameter. How-

ever, the accuracy of this adjustment in the low propeller advance ratio range was not

adequate and consequently the 150 activity factor base plots, i.e., the effective power

coefficient m_d effective thrust coefficient plots discussed above, were generated for 2,

4, 6 and 8-bladed propellers (APPENDIX A) with performance for 3, 5 and 7-bladed pro-

pellers being obtained by h_te_olation. The activity factor adjustments, PAF and TAF,

are independent of the number of blades.

Today's general aviation aircraft are operating at moderate s_eds and are not sig-

nificantly affected by propeller compressibility losses, ttowever, it has been projected

that general aviation aircraft will be operating at sig_nificantly hi_er speeds by the 1980

time period. Accordingly, a compressibility correction for the base curves of 0.5 in-

tegrated desire, lift coefficient has been derived for use in conjtmction with ti_ese plots.

A critical Mach number, MCR!T for each value of advance ratio J, has been defined asi

the limiting free stream Mach number, M limit at which no compressibility losses are

encountered (fig. 8). If the free stream ?,Iach number exceeds the critical Maeh number,

the compressibility factor, F t is defined. It is dependent on the difference bet-ween M

and MCRIT and the effective power coefficient defined as

CPE C =Cp XPAFXPBL

PBL, number of blades correction is defined on figure 8. F t is defined on figure 9 and

the thrust is multiplied by the Ft to correct for compressibility losses.

The complete performance computational procedure is defined in APPENDIX A with
pertinent sample calculations included.

Variation in integrated design lift coefficient, CLi , has not been included in this
computer program since previous studies of propellers for general aviation aircraft in-

dicated that a value of CLi,_0.5 is about optimum for most installations. However, dur-
ing the course of the sensitivity study, preliminary results indicated an attractive poten-

tial for using increased camber to minimize the activity factor increase required to at-

tain the low noise objectives of the study. The advantage of a lower activity factor is a

lighter weight propeller. Accordingly, a limited study was undertaken to investigate the

I s f
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feasibility of deriving an adjustment factor for integrated design lift coefficient. As

shown h_ figures 10, 11 and 12, a suitable adjustment was successfully generated for

CLi = 0.7 and 0.8 with 0.5 as a base and limited to a 4-blade propeller. The advance
:ratio dependency is defined in figure 10 as PFCT. for power doefficient and as TFCT.

.for thrust coefficient. The power coefficient adj_stment, PCL--is read from figure_lll

_and the thrust coefficient adjustment TCLi is from figure 12. _rhus, the base charts can

be used with the effective power coefficient and effective thrust coefficient being defined
as follows :

CPE = Cp x PAF x PCL i

CTE=C TxTAFXTCL i

It appears tlmt the adjustment can be expanded to include the complete range of integra-

ted desio coefficientandnumbe ofb des. Theoomprossibilityadjustmentwould
need t_ be expanded to include CLi variations should,, this parameter be added, to the com-
putatidnal procedure.

I

Thee method described above is based on the current technology. The aerodynamic

performance of today's conventional propellers designed by this techhology approach

maximum attainable levels at design conditions with current low drag airfoils. Further
• i
improvements in efficiency at the design conditions are expected to be small. Conse-

quentl_', the performance method should be applicable to the 1980 time period.

i Noise Generalization

The major source of noise from aircraft is the propulsion system. In the case of

general aviation aircraft, this usually consists of one or more propellers driven by in-

ternal combustion engines of the reciprocating or rotating piston type with turbine en-

gines beginning to make a strong showing in the larger aircraft. Although, generally,

propeller noise is more intense than engine noise, the engine does contribute to the air-

craft's perceived noisiness. Furthermore, the engine is very likely to become the

major noise source when efforts are made to reduce the propeller-generated noise.

This is particularly true for those aircraft which are not equipped with engine exhaust

silencers. Since this generalization is for propellers only, it is emphasized that the low

noise levels which may be achieved through selected design and operating conditions as

presented in this report will not be representative of those from the complete aircraft

unless a parallel effort is made to reduce the noise from other sources (particularly

from the engine) as these will become predominant and set the perceived noise level of
the aircraft.

J
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16



Noise Computational Procedure. - In recognition of the increased emphasis on air-
craft noise abatement, t{amilton Standardhas beenactively involved over the past 10
years in advancingthe technology of propeller noise analysis. From this work, two pro-
peller noise calculation methodshave evolved. One is essentially empirical and based
on the works of,Beranek, Hubbard, and others (ref. 11, 12, 13, 14)plus experimental
te.c;tdata collected by Hamilton Standard. The other is a theoretical methodbasedon the
work of Garrick andWatkins, Arnoldi, Widnall, and Sperlw (ref. 15, 16, 17, 18)plus
empirical adjustments basedon measurements.

The empirical methodhas beenselected for this study in view of its relative sim-
plicit} and ease of use.

]

_he empirical method was derived from a correlation of extensive near and far-field

noiseimeasurements on full scale and model propellers of medium and large diameters
operating in the 700 to 900 ft/see tip speed range where rotational noise predominates.

I r ° " " " °I]owe_,er, at the lo_ tip speeds antelpated to meet the demred 65 to 75 perceived noise

levels (PNdB), it is expected that voi'tex noise will be an important noise source. Thus,

the m[_th0d was extended for this study to smaller diameters and lower tip speeds based

on a limited amount of data available on noise generated by small diameter, low power,

lc_w tip_peed propellers during normal flight. This estinmting method for far-field pro-

pel]c.r noise and a sample calculation are presented in APPENDIX B.
i

_he

!

1,
I
i
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required inputs to the propeller noise estimating method are:

Propeller diameter

Number of blades per propeller

Propeller RPM or tipspeed

Itorsepower per propeller

Coordinates of desired field point of interest

Aircraft forward speed

7. Number of propellers installed

8. Ambient temperature

Detailed blade shape characteristics such as twist, camber, and thickness distribu-

tions, activity factor, planform shape, and airfoil section are not considered. However,

for properly sized propellers, these factors generally have a minor influence on the

noise and are thus neglected for method simplification.

In order to make a noise estimate, a summation is made of partial levels based on

desigu and operating conditions. The partial levels are provided in graphical form to

minimize calculations. The method allows quick estimates of overall sound pressure

level (SPL) in decibels (dB) and of perceived noise level (PNL) in perceived noise deci-

bels (PNdB). _ "
--- //
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Recent test data on highly loaded low tipspeed propellers have indicated that the re-

duction in noise with tipspeed is a function of propeller stall characteri_ics. From this

limited stall data, it appears that noise reductions can be achieved with decreasing tip-

speed at a given power only to the point where the propeller becomes stalled over ap-

proximately the inner 50% of the blades. This stall criteria is defined as a function of

power coefficient for a given advance ratio as is shown on figures 5 and 6 for the 2-

bladed propeller. Sin_ilar curves for 4, 6 and 8--bladed propellers are included in

APPENDLK A. In order for the above empirical method to be accurate, it is recom-

mended that propellers be selected so as to operate to the left of the indicated 50% stall

line for the critical noise condition as defined in the section on Performance Generaliza-

tion.

It should be noted that at the high tipspeeds (near 1000 ft/sec) of some general

aviation aircraft in use today, it appears that estimates obtained by use of the method

deviate from the meager test data available on these types of aircraft. A tentative ex-

planation for this is that these high tipspeeds exceed the propeller blade critical tip-

speeds (the speed at which the peak le.ad velocity of the air over the surface of the blade

airfoil reaches that of sound). Limited experience shows that when a propeller is oper-

ating above its critical speed, the formation of a shock wave occurs, thereby raising the

noise level as much as 10 PNdB over that wh}eh is generated at tipspeeds j,._st be!ev,"

critical. The empirical method does not attempt to distinguish between suberitical and

supercritieal operating conditions as this involves detailed _erodynamic calculations

which are outside the intended scope of this noise estinmting method. R[,!:her, the

method calculates levels which are between the two. Thus, for a prop_.]k_r operating at

near but below critical speed the method will tend to over estimate the p.:,ise levels,

while at above critical speeds, the method will underestimate the noise.

A recent evaluation of the accuracy of the generalized propeller _,oise estimating

method showed that for propellers operating between 700 and 900 ft/sec {.ipspeeds, the

calculations of peak PNL agreed within ±3 PNdB of the measured peak PNL. Also, a

very limited data sample for propellers in the 1000 R/see range indicated that the agree-

ment between calculations and measurements was of the order of ±6 PNdB, presumably

because of supercritical operation. Noise data for low tipspeed propellers under flight

is not available so no precise assessment of accuracy can be made for the estinmtes of

advanced quiet propeller concepts defined in other parts of the study. Noise measure-

:merits are urgently needed in this area to provide a basis for checking the method and

•to make empirical adjustments as required.

Maximum Noise Level Criterion. - In evaluating the reaction expected when a lis-

tener is subjected to noise generated by general aviation aircraft two points must be

considered: 1) noise measurement location, and 2) the procedure used to evaluate sub-

Jective reaction to the noise of interest. Of course, these two points must be consider-

ed with respect to the noise source under evaluation. Therefore, the following discus-

sion is related to propeller noise from general aviation aircraft.

J
f
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. Noise Measurement Location: The measurement location selected for the study
is that point on tlm 500 foot sideline at which the maximum noise after lift-off

occurs. This location was selected for the following reasons:

a) At any location directly under this take-off flight path, the noise will be

affected by variations in aircraft attitude, altitude, power, and speed.

However, at a sideline location, variations in altitude will not have as

much effect on the noise since the slant distance to the aircraft will not

vary very much from 500 ft as the altitude of the aircraft varies. Also,

under the flight path, the aircraft's attitude influences the noise since it

alters the directivity. At a sideline location little or no change in direc-

tivity occurs with aircraft attitude changes.

b)

c)

d)

The noise measured while the aircraft is still on the ground will be signif-

icantly influenced by the reflections from the ground. These reflections

usually cause reinforced low frequencies, depressed mid-frequencies, and

variable reinforcements and cancellations at high freque_eies. These

effects depend on the frequency spectrum of the source, the distance from

the source to the receiver, the terrain composition, and the heights above
the ground of the source and receiver. If the measurement location is

selected such that the maximum noise occurs after lift-off, the effect of

ground reflections on the noise will be reduced since the aircraft will be at

some altitude above the ground.

A static (i. e. at zero forward speed) propeller operating at high power and

low speed will generally have a significant portion of the blade operating at

very high angles of attack. The result is flow separation and an increase

in the broad band noise resulting in a higher perceived noise level than for

an unstalled propeller operating at the same tipspeed, power , and thrust.
However, as the aircraft gains speed during take-off roll, the blade sec-

tions unstall until at approximately lift-off speed the whole blade is oper-

ating at angles of attack below stall. Therefore, the sideline measurement

location selected will provide a good indication of the nmximum take-off

noise as the aircraft approaches populated areas around the airport.

A final consideration is the relative location of houses, farms, etc. which

would be subjected to the noise. The general configuration of small air-

ports and airfields is such that more land is purchased along the approach

and take-off paths. In addition, the maneuverability of small planes at low

altitudes and slow speed allows them to alter their courses relatively soon

after take-off to avoid populated areas. Thus, the area where listeners

are most likely to be annoyed lies to the side of the runway. Airfield

boundaries of 500 ft to either side of the centerline of the runway appear

reasonable, considering the general layout of present and planned general

aviation airfields. -_

/
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. Noise Rating Scale: At the present time, there is much controversy on the

scale to be used in rating the annoyance of aircraft noises. Commonly pro-

posed aircraft noise annoyance rating scales are Perceived Noise Level (PNL),

Tone-Corrected PNL (PNLT), and Effective Perceived Noise Level (EPNL).

PNLT is PNL with a correction for the presence of discernable tones, and

EPNL applies a duration correction to PNLT to account for the time the noise

is within 10dB of the peak PNLT.

It is the contention of ninny psychoacousticians in the aircraft industry that PNLT

and EPNL do not significantly improve the correlation between the subjective judgement

of lis!eners and the calculated annoyance rating of aircraf_ noise. In some cases, the

scatter in subjective evaluation was increased when PNLT and EPNL were used. Also,

EPN _ beh_g dependent on the time the signal is between its peak value and 10dB below

the _ mk value, the procedure for estimating EPNL becomes very complicated. The air-

craft s position and attitude, as well as the directivity pattern and frequency spectrum

of th( noise, must be defined since PNLT's are calculated at 1/2 second intervals while

the n,)ise is less than 10dB below the peak value. The time between 10dB down points

may )e up to 20 seconds depending on aircraft speed and altitude requiring 41 PNLT
calculations. As a consequence, it was decided at Hamilton Standard to select PNL as

the noise rating scale because: 1) It is a good measure of the relative annoyance of the

ivarious aircraft designs considered in this study, 2) It can be estimated by use of a

relatively simple calculation procedure, and 3) It is a reasonable indication of the sub-

jectiv:e reaction to aircraft noise. The latter is true, since for propeller noise, the

duration correction generally cancels with the tone correction. "
i

_he method described above presents a means of calculating propeller noise for a

broad range of design and operating parameters. In order to estimate noise down to

the 65-75 PNL range required in this study, the method has been extended to cover pro-

pellers in the low tipspeed range to the point where the blades become 50 percent stalled.

However, this extension and stall limit concept has been based on minimaltest data.

Accordingly, more noise measurements on quiet propellers are urgently needed to pro-

vide a thoroughly reliable noise prediction method. Again it should be pointed out that

quiet aircraf¢ may not be achieved by reductions in propeller noise without comparable
reductions in engine noise.

Weight Generalization

An accurate weight generalization of modern aircraft propellers is difficult to

achieve for many reasons. While a propeller may be described generally by several

well-known parameters, the actual design requirements can introduce a wide range of

weights for several propellers all having the same values of these parameters. For

example, the type of control system required, the propeller environment, aircraft

J
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operating airspeeds and attitudes all influence the propeller design and consequently

weight. Thus, only the gross geometric characteristics can be accounted for in any

particular generalization.

]n prelimiflary propeller selection studies, there is a need for some means of es-

timating weight trends and it must be recognized that the fnal weights may vary sig-

nificantly after all factors have been considered. This contractor has prepared such

weight estimating procedures for various classes of propellers. As an example, weight

estinmting formulae are presented on figure 13 for two classes of propellers:

. Conventional shaft mounted turbo-props with solid alunfinum alloy blades.

Lightweight propellers with fiberglass-shell, steel-spar blades and integral

gearbox type hubs.
he propeller geometric parameters (diameter, number of blades, activity factor)

and operational parameters (SHP, RPM, Mach number) incorporated in these formulae
are the ones which experience has shown to have the most predo_rfinant effect on propel-

ler Weight and the exponents have been established empirically to best fit the weight

:trends of current ttamilton Standard propeller constl_uctions.

The same teclmique was used in defining propeller weight formu!ae f:w general avi-

ation'aircraft of the 1970 and 1980 period and is discussed in the following text.

V_$eigh__tEquation for the Present Propellers. - With this successful background in

propeller weight prediction, the same methods were applied to the general aviation pro-

pellers categorized in Table I. Since this contractor has designed and manufactured

propellers only for aircraft of the fourth and fifth categories, a market survey of gen-

eral aviation propeller nmnufacturers was conducted to establish weight and cost param-

eters of propellers for the first three aircraft categories as well as to add to these data

for propellers of the fourth and fifth aircraft categories. These data were assembled to

provide a basis for the development of a weight generalization to cover propellers for

all general aviation aircraft categories.

As a result of this survey and existing data at Hamilton Standard, propellers listed

in Tables HI and IV were used in defining a new weight generalization equation. The

same exponents are used for the propeller geometric parameters and operating condi-

tion parameters as were generated previously for the conventional solid dural blades

(fig. 13) but with revised constant multipliers, K w, for counterweighted propellers.

These equations as shown on Table V were found to be valid for the 1970 general avia-

tion propeller categories defined in Table I. Agreement between actual and calculated

weights was good except for one propeller listed in Tables Ill and IV. In some cases,

the propellers listed were not tailored for minimum weight so they were heavier than

j J • .
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the weight calculated by the equation This often occurs when the same hub mechanism

is used for several different blade sizes. Each propeller must be designed for minimum

weight for the equations t ° be effective.

Weight Equatien for Propellers for the 1980 Time Period. - Propellers for the

1980's must necessarily be larger, heavier and more costly than present propellers in

order to obtain reductions in noise levels. It was ax, objective of this study to obtain the

lowest propeller weights for the 1980 time period commensurate with competitive costs

in the general aviation market. Weight reduction requires a change in materials, pro-

cesses and/or design concepts within the constraint of acceptable costs. In pursuit of

these objectives, the following material changes were considered:

1. Hard aluminum blades

2. Fiberglass shell and solid aluminum core blades

3. Aluminum barrels for propellers applicable to airplanes in Categories I:[I, IV

and V (Categories I and II are already aluminum).

The following design concept changes were considerc_d:

1. Integrated propeller and gearbox on geared engines

2. Integral propeller oil reservoir

3. Integral propeller governor control

4. Double acting hydraulic pitch change system with feathering and pitch lock

Other material and concept changes could be employed• for weight reduction (i. e.

titanium blades and barrels) but these were not considered to be economically feasible

for general aviation in the 1980's. The changes listed above were assessed based on a

cost/weight trade-off for application to propellers in each of the five aircraft categories.

The higher strength hard aluminum material was selected for blades and blade

cores in all five categories based on approxinmtely five percent reduction in blade

weight for a small increase in cost.

Significant weight savings are possible with fiberglass shell and solid aluminum

core blades but the cost based on present manufacturing methods is believed prohibitive

for the general aviation market. Certainly new processes and fabrication methods

can be developed to reduce costs to more acceptable levels before 1980. However, it is

estimated that even these reduced costs would still be approximately twice that of solid

aluminum blades so the fiberglass blades were considered in only Category IV and V

propellers for the 1980's. This is not to say that fiberglass blades could not be incor-

porated in all aircraft categories if the higher cost is acceptable.

/
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Aluminum barrels were not utilized in propellers in aircraft Categories III, IV and

V because no weight reduction was obtained in these larger propellers and the cost re-
duction was negligible.

I

Integration of the propeller, including oil reservoir and control, with the engine

gearbox has been used to advantage for cost and weight reduction on high-powered pro-

pulsion systems but the complexity of such a concept study was found to be outside the

scope of this general aviation program. The benefits of such a concept are considered

to be significant and a separate study in close cooperation with the engine manufacturer
is recommended.

A significant weight saving is gained in larger propellers by replacing blade counter-

weights with a double acting pitch change system. This concept was incorporated in the
Category V propeller.

I As a result of this study, the constant multiplier in the generalized weight equation

was reduced in Categories IV and V for 19S0 over the 1970 factors. These are shown

on Table V. It should be noted that the weights do not include deicing, spinner and

governor. Weights of blade deicing and spinner were not included in the generalized

weight equation because they are optional components not universally used on all propel-

lers. Governor weight was not included because several different types of governors of

different weight can be used on aircraft ir_ the same category. Moreover, these are

often provided by the engine manufacturer.

These generalized wei_,;ht equations have been established to indicate the weight

trends with variations in propeller geometric shape parameters. In a later section of this

report, representative propellers have been selected from the sensitivity study for each of

the aircraft categories, and a detail concept design has been tmdertaken for each of these

propellers and the weights precisely established. The accuracy of the weight generalization
is assessed by a comparison with these weights.

Cost Generalization

Selling price is the least adaptable to generalization of all items in this study be,-

cause prices are negotiable and manufacturers' cost structures differ. Because of this,

the generalized cost equation for the sensitivity studies was derived using the cost to the

aircraft original equipment nmnufacturer, O.E.M. as a base. A more definitive base

would be the inherent time, i.e. number of hours required to manufacture a propeller.

This would eliminate the variables inherent in the overhead and profit margin factors

used to convert inherent time into sell price. The disadvantage with this method of cost

generalization is that the inherent cost of a product includes purchased parts, material

and labor. These items do not convert readily from price to a time basis because pur-

chased parts cost depends upon overall usage. Parts costs increase as usage digresses

_, .," \.
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from universal use in several industries to use in propellers only or to use in only cer-

tain propeller models. The use of original equipment manufacturer, O.E.M., cost as
a base avoids the problems associated with tt_ese variables.

Co.%t E(]uation for Propellers in 1969. - End user price lists and weights were ob-

tained for representative industry propellers in the five aircraft categories being studi-

ed. Origimal equipment manufacturer, O.E.M. costs were esti_vmted by taldng G0% of

the list prices. This percentage is only an assumed value for this _,tudy and can be

varied by the user. The prices and weights for selected propeller models are listed in

Table VI. The price and weight figures were averaged for each category and were used
in conjunction with an 89_ learnhlg curve (fig. 14) to define costs as shown below:

C = ZF (3B0.75 + E)

C I=F (3B 0.75 +E)
b

where:

C = ,'_verage O.E.M. propeller cost for a number of units per y,mr, S/lb.

C 1= single unit O.E.M. propeller cost, S/lb.

LF
Z-

LF 1

LF = learning curve factor for a number of units/year.

i

LF 1 = learning curve factor for a single unit.

B = number of blades.

F = single unit cost factor.

E = empirical factor.

The factor E is an empirical function of category only whereas the factor F is a

function of single unit cost. A private market survey was used to obtain the number of

propellers supplied by a typical nmnufacturer in 1969 and that projected for 1980

(APPENDIX C, Table 1C). F and E factors are defined in Tab!e VII for each propeller
category in 1969 and 1980.

/
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] Cost Equation ior i ." ._el!ers of the 1980 Time Period. - Cost predictions for the
1980 time period must r_flect the projected change in yearly units manufactured by a

single supplier and changes in materials, processes and design concept between 1969

and the 1980 time period. At this time, it does not appear that any change in materials

is justified for Categories I, II and HI for the 1980 propellers. Also, it is not possible

to predict any significant improvements in design concepts or manufacturing processes
otl_erthan those represented by the learning curve. Thus, in Categories I, H and III,
th_ F-factors for 1980 are shown to be identical to the established 1969 values. How-

ever, for Categories IV and V, there is a substantial increase in the 1980 F-factors due

principally to the change to the lightweight, but higher-cost fiberglass shell blade. It

should be recognized that the actual cost comparison between 1980 and 1969 will be more

favorable than the relative F-factors due to tlm offsetting effects of the reduced weight

and improved learning factors due to increased production rates. The factors for Cate-

gories IV and V were specifically modified for the following changes in materials and

design concepts which will be discussed in the section on Propeller ttardware Concept
Study.

lo Blades incorporating a fiberglass reinforced plastic shell with solid aluminum

core construction were projected for use in propellers in Categories IV and V

for the 1980 time period.

o A double-acting governor and pitch change actuator system was assigned to the

Category V propeller to replace counterweights and spring packs but adding a

retractable take-off stop and pitch lock.

Factors for all categories are listed with the generalized cost equation in Table VII.

Propeller design changes for 1980 discussed above are not necessarily the only changes

which were incorporated during the detailed concept phase of this study, but they repre-

sent modifications that can be incorporated by any manufacturer.

This cost equation is quite simplified, but correlates sufficiently well with the avail-

able industry price data to serve as a proper basis for the sensitivity study. The com-

puter program presents the cost on the basis of a unit cost plus a learning curve. A

learning curve slope of 89 percent was assumed for this study although this can be al-

tered by the user.

i
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Computer Program

The performance generalization for conventional propellers and multi-bladed pro-

pellers and the eor_'esponding noise, weight and cost generalizations described in the

previous text have been computerized. Tile computer program has been coded in

FORTRAN V and has been run on the UNWAC 1108. With this computer program, the

aforementioned propeller charac(eristics can be readily calculated for a range of pro-

pellet geometries and operating conditions.

The required inputs are the following:

Propeller

1. Diameter range

2. Number of blades range (2-8)

3. AF range (80-200)

4. CLi = 0.5

Operating condition (nmx2mum of 10)

1. ttorsepower or thrust

2. Altitude, ft

3. Velocity, knots

4. Temperature, °F

5. Tipspeed range

Other

I. Number of engiaes

2. Coordinate of field point for noise computation

3. Airplane classification (1through 5)

4. Flight design Mach number

5. Performance computation options

6. Cost computation options

There are three performance computation options available. First, ff an engine is

specified, then the operating condition is defined with the horsepower and the corre-

_2_onding propeller thrust is computed. Second, if a propeller thrust requirement is
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defined, then the thrust: is included as input mid the horsepower is computed, thus indi-
cating engine size. Third, for operating conditions definedby horsepower or thrust,
it is possible to define the tipspeed corresponding to 50%stall. This would be the tip-
speedfor minimum noise. Cost can becomputedbasedon the 89%slope learning curve
andthe unit costs and quantities selectedby Hamilton Standardfrom available surveys
as discussed in the cost generalization section. There are the options of varying learn-
ing curve, unit costs, and quantities.

A sample print out is included as Table VIII. The output consists of performance,
weight, and cost per propeller and the noise per airplane since it is adjusted for num-
ber of engines. The weight and cost for both 1970and 1980time periods are included.
The corresponding blade angle for eachperfornwmce point is printed out for the fixed
pitch propeller application. The asterisks under PNL heading specify that for this con-
dition the propeller is more than 50%stalled. As was specified in the section on noise
generalization, it is recommendedthat the propellers be selectedwhich donot exceed
the 50_,_stall limit. The asterisks under the thrust headingindicate that the condition is
t_yond the limits of the generalization. As additional information, compressibility cor-
rection factor, Ft, free stream Mach number, M, advanceratio, J, power coefficient,
Cp, and thrust coefficient, CT, are included on the print out. For example, from an
examination of these parameters, an indication of the presence and magnitude of com-
pressibility losses andthe blade loading characteristics may beestablished.

The program is codedin FORTRANV and has been run ona UNIVAC 1108. Approx-
imately 2000performance points can becomputedper minute. A list of the program
and pertinent input-output instructions are included as APPENDIX D.

SENSYrIVITYSTUDIES

Conventional and Multi-Bladed Propellers

Itaving developeda computer program incorporating the propeller performance,
noise, weight, and cost criteria derived under this program, a sensitivity studywas
undertakento evaluate the trade-offs amongthese factors for propeller configurations
applicable to the representative aircrat_ from each general category described in Tables
I and II. As specified in RFP A-15989 (HK-5} dated 18December 1969, the trade-off
studies were targeted at noise level objectives downto the range of 65to 75 PNL at a
distance of 500 ft at maximum power. For these studies, only the isolated propeller
was considered. The aircraft and engineparameters were not varied andhave beenin-
eluded only as implied by the operating conditions specified for eachaircraft. The re-
sults of the studies covering the propellers for the representative aircraft of Categories
I through V as defined in Table II are discussedbelow.

I
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For each :aircraft a study was made for a series of propellers incorporating varia-

'tions in diameter, number of blades from. 2 to 8, blade activity factor from 100-200 all

at the same integrated design lift coefficient of 0.5 as explained previously. For Cate-

gory I, an activity factor range of 80-200 was used. To investigate noise levels down to

the 65-75 PNL range, a tipspeed range from 350 ft/sec to 900 ft/sec was examined.

The parametric studies were made using the computer program previously discussed

under the section on Technolo_, Identification. Performance has been computed for the

take-eli; climb and cruise regimes as defined on Table iI. The corresponding 500 foot

side Une noise (PNL) for the take-off condition was computed with the minimum tipspeed

lin-hted by the 50% propeller stall criteria. The weight and cost are based on 1980 tech-
nolo_-. For each aircraft category, the 1970 technology weight and costs are included

on the curves corresponding to the number of blades and activity factor of the propeller

currently on the aircraft.

Curves of perfornmnce (T.O., climb, and cruise), noise, weight and cost were

plotted versus tipspeed for constant values of diameter for a range of activity factors

and number of blades. The data for 2, 4 and 6--bladed propellers were plotted on fig-

ures 15, 16, and 17 for the Piper Cherokee. For the fixed pitch propellers associated

with aircraft Category I, propeller blade angles as independent va_'iables have been in-

cluded on the performance curves. Thus, the blade angle providing the best perfor-

r_mnce compromise for take-off, climb and cruise can be selected as desired by the

particular operator. Similar data for 2, 4, and 6-bladed propellers were plotted on

figures 18, 19, and 20 for the Cessna 210J Centurion Category II aircraft and on figures

21, 22, and 23 for the Beech P__aron B55, Category IIi aircraft. The same data for 3,

4 and 6-bladed propellers were plotted o_ figures 24, 25, and 26 for the Category IV

Beech Queen Air and on figxlres 27, 28, and 29 for the Category V Deitavilland Twin

Otter. The 8-bladed propeller data were not included because of their excessively high

propeller costs for minimal noise and performance gains. As a reference, the present

day propeller configuration was noted on the chart with the appropriate propeller number

of blades. The required th_xlst at cruise is not tabulated in Table II, but itcan be found

• from these reference points. It should be noted that Table II was set up to establish

:approximate values of aircraft thrust requirements at key operating conditions to set up

constraints for the sensitivity studies. The actual thrust requirements for each of the

' aircraft will differ in varying degrees from the Table II data, but the important point is

_hat the constraints of required thrust at takeoff, climb, and cruise must be considered
J

in _valuating the tradeoffs for low noise propellers.

From an inspection of these sensitivity studies, the effect of the primary geometric

and operating parameters inherent to each of the five aircraft applications are discussed

below.

'--- /j _j -.
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Noise

, Tipspeed - It is expected that the slope of the noise curves with tipspeed

would tend to flatten out at the lower tipspeeds as stall approaches 50% of

the blade radius. Itowever, as was discussed in the section on Noise

Generalization, the noise characteristics of propellers operating in the

very low tipspeed range have not been clearly established. Accordingly,

the curves were conservatively terminated at the tipspecd corresponding

to 50% blade stall. An approximate 6 PNdB reduction in PNL per i00 ft/

sec reduction in tipspeed can be obtained as long as the propeller is oper-

ating with no stall outboard of the 50% radius.

. Diameter - For a given tipspeed, there is a fdrther 1.5 PNdB reduction

per foot increase in diameter. Furthermore, increasing diameter per-

mits operating at a lower tipspeed before 50% stall occurs and conse-

quently results in further noise reduction.

o Number of blades - A 3 PNdB reduction in PNL is atlai_ed by the addition

of a blade. Furthermore, with increased number of blades, it is possible

to operate at a reduced tipspeed before 50% stall occurs.

1 Activity factor - By increasing AF, it is possible to operate at a kr,,_er

tipspeed before the propeller is 50% stalled and consequently som.v.w!_at
lower noise levels are attainable.

I a summary, on the basis of the above discussion, minimum perceived noise level

is obtained by reducing tipspeed, and increasing diameter, number of blades, and

activity factor relative to the present propeller colffigurations.

Performance

Q Tipspeed - For a given propeller configutation (i.e. diameter, number of

blades, and activity factor) peak performance is obtained at the tipspeed

where the propeller is operating at blade sectional angles of attack cor-

responding to maximum lift to drag ratios. At the tipspeeds below this

optimum and corresponding to the lower noise levels, efficiency is reduced,

resulting in the need to increase diameter, activity factor and or number

of blades to attain the performance levels obtained at the higher t_pspeed.

2. Diameter - At the lower tipspeeds corresponding to reduced noise levels,

performance increases as diameter increases.
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3. Number of blades --The addition of more blades also increases perfor-
mance at the lower tipspeed.

4. Activity factor - Increases in activity factor at the lower tipspeeds result
in better performance.

In summa_zy,as noted in the noise discussion for the reduced tipspeeds required
for low perceived noise levels, increases in diameter, number of bladesand activ-
ity factor are required to maintain performance as well as to reduce noise.

_Weight and Cost

1. Tipspced - Weight and cost reductions can be obtained by reducing tipspeed.

o Diameter - The h_ereases in diameter required to meet the low noise ob-

jective_ for the 1980 time period and the performance requirements, will

result in increased propeller weight and cost.

. Nmnber of blades - Increase in number of blades to offset at least in part

the diameter increases required for quiet propel!ers wi[I also result in

increases in weight and cost.

4. Activity factor - Weight and cost increase with increases in activity factor.

Thus, for the reduced tipspeeds, increases in diameter, activity factor, and num-

ber of b "lades required to attain the significantly lower noise levels and the required

performance of the 1980 propellers result in increased cost and weight.

O__ptimum Low Noise Propeller

The optimum propeller for the aircraft can be obtained from these curves depending

upon the relative invportance of performance, noise, weight and cost to the aircraft

owner. As an indication of how these trade-off studies can be made, for the Cessna

210J, curves of propeller performance, noise, weight and cost were •plotted on the as-

sumption that the propeller is always operating at the tipspeed corresponding to 50%

stall at take-off and consequently minimum noise. These are plotted as functions of

_liameter, activity factor and number of blades on figure 30. From plots such as these,

• he operator can judge the effect of these trade-off parameters and decide upon an opti-
mum propeller config_aration which best fits his requirement.
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Changesin Integrated Lif± Ooefficient

Although as previously noted, an integrated design lift coefficient adjustment has

}lot been included in the generalized perforn_nce computer program, the effect of in-

tegrated desi_ lift coefficient for a sample case has been shov:n. A sensitivity study

was nmde for the Category II Cessna 210J airplane with a 4-bladed propeller with a 0.7

hltegrated de, sign lift, coefficient and plotted on figure 31. The performance computa-

tions were made utilizing the Contractor's propeller perfornmnee computer program

which was used in deriving the generalized perfornmnce for the study. Weight and cost

are not flmctions of integrated design lift coefficient. Consequently, the values ire the

same as for the corresponding propellers shown on figure 19. Noise is only a function

of integrated design lift coefficient in that, with increases in tl_s parameter for tlm

same activity factor, the 50% stall criteria occurs at a lower tipspeed with correspon-

dingly lower levels of perceived noise.

As an example of possible ways of evaluating this effect, activity factor and inte-

grated design lift coefficient, CLi variations for 4-bladed, 8 ft. diameter propellers for
the Cessna 210J operating at 400 ft/sec at take-off are shown on figure 32. The follow-

ing evaluation was nmde from these data based on constant take-off performance.

CLi/AF 0.5/190

T.O. Thrust 900

(300 SHP-400 ft/sec -S. L. -71.2 Knots)

0.7/156 0.3/!64 0.5/1.50 0.7/129

900 820 820 820

Climb Thru st 742

(285 SHP-378 ft/sec-S. L. -95.5 Knots)

730 676 710 708

Cruise Thrust 372 364 363 370 364

(214 SHP-346 ft/sec-7500'-163.2 I_nots}

PNL 75 76 75.5 76 77.5

Weight 114 90 95 86 76

Cost 1060 920 950 885 790

R can be seen that for the same take-off performance, reductions in activity factor are

possible with increases in integrated design lift coefficient. Consequently, weight re-

ductions of up to 20% can be realized and cost reductions of up to 10% are realized for

essentially the same noise at the expense of some loss in cruise performance.

Similar studies can be made to investigate the effects of increasing integrated de-

sign lift coefficient on diameter from the data presented on figure 19 and figure 31.

, 31



! It is immediately apparent from an inspection of these sensitivity data that to achieve
l S .... :i__gmfieant reductions in perceived noise levels leads to low tipspeed propellers with

!appreciable increases in overall size, weight and cost. The reality of such drastic

changes in general aviation propellers is dependent entirely upon how stringent the anti-

noise requirements may be by the 1980 period. Moreover, it should be apparent that

these large changes in propeller configuration and operating tipspeeds required to at-

taft: low noise levels imply sig]_ificant modifications to the engines to provide the asso-

ciated large reductions in propeller shaft speed and probably to the aircraft to accom-

moqlate these propellers. Thus, while the effect of low noise propellers on engine and

air,raft design is beyond the scope of this study, it is obvious that this will need to be
thoroughly investigated by engine and aircraft manufacturers before the requirement

for quiet propellers can be completely assessed. Moreover, the contribution of the en-

gine and aircraft to to_al aircraft noise needs to be evaluated. Thus, it is evident that

the impact of the possible noise restrictions in the 1980 period on general aviation will

have a significant effect on the design and cost of the entire aircraft to a degree depen-

dent on the severity of the restrictions.

The sensitivity studies discussed above were ail based on using the same horse-

power as is p_esently available on the aircraft. Another approach would be to define a

take-off thrust requirement and to conduct a sensitivity study to select an optimum tip-

speed, horsepower and propeller to meet the noise and performance requirements.

Thus, an engine si_e as well as a propeller size could• be defined. These analytical

procec_ares (APPENDICES A and B) and the corresponding computer program (APPEN-

DIX D) provide the capability of undertaking sensitivity studies similar to the ones ac-

con_plished herein for establishing the optimum propeller configuration for any aircraft

on !the basis of the trade-off criteria specified by the user.

Other Concepts

Variable Camber Propellers, - The Variable Camber propeller was developed by

Hamilton Standard as an effective solution to the special aircraft problem of stringent

performance requirements at more than one operating condition. A preliminary look at

the application of this propeller concept to general aviation aircraft indicated no signif-

icant performance and noise advantage with a considerable increase in weight and cost.

Consequently, this concept was not further considered in this study. However, partic-

ularly for the large aircraft, if the cruise speed should increase significantly, this con-_

eept should be given further consideration.
..

Engine Revisions Required to Reduce Propeller Noise. - Early in the sensitivity

study it became apparent that large reductions in propeller rpm would be required to

reduce noise level. The question of cost and weight change associated with modifica-

tions to the engine then became of interest. A definitive answer to this question re-

quires study by engine manufacturers and cannot be provided within the scope of this

study, but a preliminary examination of a typical engine modification and the impact on

total engine weight was made.
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! Diz'ect (tri_-e pistd;i en:-._C_ must have reduction gearing incorporated and geared
engines must have larger gear ratios in order to attain the very low tipspeeds required

for quiet propellers. Small gear reduction ratios (up to approximately 2:1) can be at-

tained by either incorporating or modifying existing simple spur gear trains. Itigher

gear ratios (approximately 4:1) require more complex gear trains; i.e., compound spur

or _nulti-stag e and planetary.

I Figure 33 shows a preliminary sketch of typical modifications proposed for the gea_
train of the Continental Tiara 6-260A engine to obtain a relatively small change in gear _'

reduction. The cam shaft of the present engine configuration is driven directly from thd

propeller shaft by a spline. In the modified version, the propeller drive shaft would be :
spaced fu_her away from the engine shaft to increase the ratio of the drive gears. This

requires that the cam shaft be suppo_'ted on a separate bearing and driven by a single

mesh spur gear train at its original speed of twice engine rpm. More axial space is

required to install this additional gear train. Since the cam shaft and propeller shaft

are no longer in line, oil for the propeller must betransferred from the cam shaft to the

propeller shaft by a beat tube or nmnifold. A larger gearcase housing is then required

to enclose the modified gear train. These engine changes reduce propeller noise but do

not necessarily reduce engine noise, ttigher gear ratios would require more extensive

modifications to the engine than those described above.

A preliminary study was also n_de to assess the effect of propeller speed on engine

and gearbox weights. The Cessna 210J airplane from Category II with a 285 horsepower
engine was used as an example. The present engine on this airplane is the Continental

I0-520-A. The Continental 6-285A geared engine was selected for the lower propeller

tipspeed applications. Data for these engines is shown in the following table:

Cyl. Horsepower ERPM _ Drive

I0-520A 6 285 2700 471 direct

6-285A 6 285 4000 354 "" geared

Weight of the basic 6-285A engine without gearing was estimated using an approx-

imate equation for gearbox weight developed by this Contractor for higher power engines.

This equation relates gearbox weight to propeller torque as shown below:

W = 0.10 Q0.84

where: W = weight of gearbox, lb

Q = propeller torque, ft-lb

.7
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Using tlm Continental 6-2 _:A engine for a 95 PNL propeller driven at 2000 RPM, the

gearbox weight was calculated to be 26 pounds resulting in a basic engine weight of

354 - 26 = 328 pounds. The following table shows total-geared engine weights for four

PNL values for the 210J airplane using the above equation for gearbox weight.

PNdB H_PP PRPM ERPN[ G/R

1) 102 285 2700 2700 1:1

2) 95 285 2000 4000 2:1

3) 85 285 1700 4000 2.35:1

4) 75 285 1000 4000 4:1

Prop. En_ne

Torque Torque

555 555

748 373"

882 373

1500 373

Weights

G/B To __ii

471 0 471

328 26 354

328 30 358

328 47 375

Although the lower propeller rpm required to reduce noise levels called for reduc-

tion gearing, the engine rpm has been increased over that of a direct-drive engine.

Therefore, for the same horsepower, the torque requirement of the engine was reduced

and the engine weight decreased more than the additional weight associated with reduc-

tion gearing. This resulted in a lighter overall powerplant.

This study is preliminary in nature and applies only to a narrow range of engine

powers. No cost estirr_tes were made for this study.. Accordingly, it is evident that a

detailed study of weight and cost variations in ger, eral aviation reciprocating engines

mt_st be made to thoroughly assess the engine revisions required to accommodate low

"noise propellers.

Integrated Gearbox and Propeller. - An additional weight and cost saving can be

gained by nmking the propeller barrel integral with the engine drive shaft on geared

engines and combining the gearing, propeller oil reservoir and control into an integrated

assembly. The major weight and cost saving results from elimination of the propeller

attaching flanges on the propeller and engine shaft. This would be more advantageous

for the higher powered aircraft.

Prop-Fan Propulsion System. - An interesting new propulsion concept currently

being extensively studied by this Contractor for application to large STOL aircraft and

Which has several attractive features desirable for general aviation aircraft propulsors

including low noise characteristics is the Prop-Fan. As its name implies, the Prop-

Fan lies intermediate in the propulsion spectrum between propellers and fans and is

aimed at combining the good take-off and reverse performance and low noise levels of

the propeller with the favorable high speed cruise performance and compact size of the

fan. This propulsion concept includes a ducted, multiblade, variable pitch fan which

can be coupled to a suitable powerplant. Characteristically, the Prop-Fan is a compact,

small diameter machine with good performance over a broad flight spectrum and with
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low noise production which when matched to a lightweight powerplant could be an attrae-

_tive, geometrically compatible, low noise lightweight propulsion package for general

aviation aircraft. Accordingly, a brief study of this concept has been undertaken herein

to provide more specific visibility as to its potential application to the rather small air-
craft included in general aviation.

I
i As can be seen from an inspection of the propeller sensitivity s_udy curves, the

65-_75 PNdB nolse level is attainable only by apprecmble increases in diameter, number
of blades, and activity factor along with large reductions in tipspeeds. Propellers with

the_e large geometric proportions will be heavier and generally less compatible with the

geometries of the rather small aircraft included in general aviation than existing pro-

peller installations. In view of the attractive compactness and low noise characteristics

of the Prop-Fan propulsor concept, a preliminarh_ study has been undertaken to compare

the size, weight, performance and noise characteristics of a Prop-Fan propulsion sys-

tem to a quiet propeller propulsion system both targeted for 75 2NdB at 500 feet and

based on one of the study aircraft.

Since the forecasts predict that the largest portion of the general aviation fleet in

the 1980 time period will be the Category II aircraft, the Cessna 210J Centurion was

chosen as the Prop-Fan study aircraft. The 4-bladed, 8-foot diameter propeller in-

corporating blades of 150 activity factor and 0.5 integrated design lift coefficient selec-

ted by A. C. 5I. D. for the hardware conceptual design study is the comparator quiet pro-

pellet along with the current propeller installation. The approach then is to compare
thee low noise propulsors and the current propeller installation with each sized to meet

the Cessna 210J performance reffairements.

As a first step in es%ablishing a Prop-Fan config_aration for this comparison, a plot

of horsepower required for the take-off thrust and the corresponding perceived noise

level as a function of diameter for a representative 8-bladed Prop-Fan was prepared to

permit the selection of a suitable diameter. From these data presented in figure 34, a

3.5-foot diameter was selected as the basis for a more detailed sensitivity study. The

effect of tipspeed and blade activity factor on performance (T. O., climb and cruise)

and noise at 500 feet during take-off is presented in figure 35 along with similar data on

the above quiet propeller. From an inspection of this figure, it is apparent that a 3.5-

ft diameter/8-bladed/1100 total activity factor/0.35 CL i Prop, Fan is aerodynamically
and acoustically (in terms of PNL) similar to the 8-foot diameter/4-bladed/600 total

activity factor/0.5 CLi quiet propeller. However the special envelope of these two pro-
pulsers are grossly different. A sketch showing the comparative size of the present

propeller on the Cessna 210J which produces 105 PNdB at 500 ft at the take-off condi-

tion, the quiet conventional propeller and the Prop-Fan required to reduce the per-

ceived noise level to 75 PNdB is shown in figure 36 along with other pertinent data.

From a study of this figure, the huge differences in the size of the three propulsors is

immediately apparent. Moreover, it may be noted that while the Prop-Fan weight (106

. \

/
./

i

/
i 35

f



}

:i

2

{

pounds) is near])' i'.u!e th',.:,i _',f the present propeller weight (55 pounds), it is signifi-

cantly lighter than the quic;_ propeller (!33 pounds). However, the Prop-Fan requires

approximately i0 percent more po_ver for the same performance than either convention-

al propeller. On _e other hand, the weight of the large gear reduction required for the

quiet propeller for reduced noise level may be elin_nated for the Prop-Fan system

since with its small diameter, the fan will operate at the desired low tipspeeds at RPM

levels similar to the crankshaft speeds of todays high1 speed, lightweight reciprocating

engiines. Thus, the total propulsion package of tomorrow's quiet Prop-Fan propulsion

sy_em may actually be substantially less than today's propulsion system.
!

' In order to obtain a clearer perspective of this promising possibility, the two quiet

propulsors were compared to the present propulsor on a total propulsion package weight

basis. Utilizing the lightweight engine concept discussed previously and the Prop--Fan

performance data presented in figure 36, the 3.5-foot dizmeter Prop-Fan selected

above, directly driven by a 330 shaft horsepower reciprocating engine, and turning at

4000 rpm adequately fulfills fl_e performance requirements of the Cessna 210J aircraft

and meets the low noise objectives of this study with _ significa_t reduction in the total

propulsion system weight compared to that of the present propulsion package. Similar-

ly, a total package weight was derived for the 8-foot diameter quiet p:copeller propulsion

system. For both quiet propulsors, the Continental 6--285A basic engine weight as de-

rived h_ the previous section was scaled for the power required on the conservative as-

sumption that the weight is proportional to engine torque. On this basis, the weights of

the two quiet propulsion systems were derived and colnpared with thepresent propul-

sion system in Table IX. l_i]e it is recognized that t:hose weights do not necessarily
i

co_'respond to actual engines, the trend with crankshaft speed appears to be of the cor-
rect order.

From Table IX, it is shown that for essentially equal performance and _2arly 30

PNdB reduction in perceived noise level, the Prop-Fan system is approximately 4.5

percent lighter than the present propulsion system and nearly 8 percent lighte_: than the

equally quiet larger diameter propeller propulsion system. Even greater weight savings

may be realized by further increasing engine speed with a small reduction gear. Thus,

the selection of the optimum engine for the Prop-Fan needs to be studied in detail by the

engine manufacturer.

On the basis of this cursory study, the Prop-Fan propulsion system appears to be

an attractive solution for the low noise restriction which may be imposed on general

aviation aircraf_ of the 1980 time period. It should be emphasized that these weight

estinmtions were based on only one sample Prop-Fan and only a few engines listed in

recent periodicals (ref. 4). Moreover, no realistic cost estimates could be made at

this time for this concept. Although on a dollars per pound basis, the comparative

weights would indicate that the costs would be competitive to present propulsion sys-

i
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terns. In view of the foregoing discussions, a thorough, detailed study of the Prop-Fan
propulsion system needsto beundertakenincluding the performance, noise, weight and
cost characteristics and future general aviation reciprocating engines, as influenced by
the requirement for noise levels in the 70-80 PNL at 500-foot range. Further, file
study shouhtbe of sufficient scopeto il-_eludethe turbo-prop and the promising light-
weight Wankc! rotary combustion engine. Although the high cost of these enginetypes
nmkes them less attractive today than the advancedreciprocating engines, with contin-
ued developmentand increased production, both types may become more competitive.
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ADVANCED PROPELLER DESIGN CONCEPT STUDY

Propeller Selections for Conceptual Design Study

From the basic sensitivity study data covering a family of propeller geometries for

the representative aircraft of Categories I - V, Advanced Concepts and Mission Division.

selected the following representative propellers for the conceptual design studies:

Current No.

Aircraft Diam Diam B1._.ade__ssA._F Tipspeed T.O. Thrust PN___LL

(ft) (ft) (ft/sec) (pounds)

II Cessna 210J 6.8 8.0 4 150 400 820 76
Centurion

IV Beech 7.75 9.0 3 150 580 2060 87

Queen Air

V DeHavilland 8.0 10.0 4 150 450 3520 83
Twin Otter

Propeller Hardware Concept Study

Tl_is design study was conducted to generate conceptual drawings of low noise level

propellers in sufficient detail to permit calculation of weight and cost figures for valida-

tion of weight and cost generalized equations incorporated in the computer program

previously discussed under the section on Technolog_y Identification. The representative

propeller parameters for Categories II, IV and V listed in the previous section were

used in this study. Advanced blade materials were incorporated where economically

feasible (Categories IV and V) and a double-acting pitch change system with protective

pitch lock and take-off stop was incorporated in Category V to reduce weight.

The low rpm required for low noise level introduces a blade retention loading con-

dition which is peculiar to this family of propellers. The low centrifugal load acting on

the blade due to low rpm is insufficient to keep the blade seated in the simple single row

ball retention under moment loading. This is called a "rocking" condition which must

be corrected by sizing the blade retention bearing diameter larger than is normally re-

quired for centrifugal load capacity. A weight penalty is incurred by this oversize re-

tention which is not encountered in present propellers. The weight penalty is still less

than that associated with adding another retention bearing to react blade moments. The

introduction of lightweight blades in Category IV and V propellers tends to accentuate

this "rocking" .condition since even lower centrifugal loads are generated.
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The hardware conceptual designs are discussed below for each representative pro-
peller s.dec_ed by A. C. M.D.

Catey_rv 17. - This is a 4-bladed constanl: speed, nonfeathering, nonreversing pro-

pellet design using parameters for the single-engine Cessna 210J aircraft. A sectional

drawing and a hydraulic schematic of this propeller are shown in figures 37 and 38

respectively. 'The blades are nmde from solid aluminum forgings for low cost and the

barrel, pitch cbange piston and dome are also m_de from aluminum forgings for low

cost and low weight. A simple ball retention is provided for the blades which includes

steel race inserts and a nylon ball separator cage. A split aluminum blade clamp holds

the blade against the retention bearing statically and at low RPM. In operation, the
blade is loaded centrifugally against the bearing.

Pitch change is accomplished by motion of the piston transferred to a crank pin on

the blade by a simple steel connecting link with bronze bu_ings. The piston is single-

acting and pressurized on the forward side toward high pitch and it reacts against blade

and spriug loads tending to move toward low pitch. Engine oilunder pressure is sup-

plied to the piston from the engine-mounted, single-acting governor through a transfer

tube in the engine shaft. A spring acting between the piston and the barrel iusures that

the blades will move to flat pitch under all operating conditions in case of hydraulic
pressure loss.

Piston torque is reacted by the ends of the piston lh_k ph:s sliding in a slotted steel

ring bolted to the barrel. A fiberglass reinforced plastic spinner is shown but is not

included h: I he cost and weight equations since spinners are optional and are not install-
ed on all propellers. Sufficient oil is carried in the barrel c,'zovity to lubricate the blade

retention bearings and the pitch change link pin bushings. Blade angle range is 50 de-
grees measured from fiat pitch.

Care ogg_ [ IV_.__.- This is a 3-bladed, constant speed, full feathering, nonreversing

propeller design using parameters for the twin-engine Beech Queen Air aircraft. A

sectional drawing and a hydraulic schematic of this propeller are shown in figures 39

and 40 respectively. Blade construction incorporates a solid aluminum core with rein-

forced composite shell for low weight. Blade weight and cost are based on solid alumi-

num core and fiberglass reinforced epoxy shell material, but other more advanced fiber

composite materials could be used based on additional study to evaluate their cost ef-

fectiveness (APPENDIX E). A simple ball bearing type blade retention incorporates a

lmrdened outer race integral with the steel barrel, a steel inner race insert on the alu-

minum blade core and a nylon ball separator cage. A split aluminum blade clamp posi-

tions the blade against the retention bearing for static and low rpm operation. A rubber

lip seal under the blade clamp seals lubrication oil inside the barrel.

4O



The blades are counterweightedtoward high pitch. This, in conjunctionwith
springs which lead the pitch changepiston toward high pitch, permits the blades to move
to full feather position in case of hydraulic pressure loss. The piston is single-acting
and is pressurized on the inboard side toward low pitch and reacts against net counter-
weight and spring loads toward high pitch. Pressurized engineoil is supplied to the
piston from the engine-mo_mted,single-acting governor through a transfer tube in the
engine shaft. Pitch change is accomplished by motion of the piston transferred to a
crank pin roller on the blade through a ,_eel yoke fastenedto the piston with a thread.
Yoke torque is reacted by a slotted yoke-mountedarm sliding on a guide rod in the bar-
rel. iThe yoke is straddle-supported on t_vobulkheadsin the barrel, and the aluminum

• I

pxston has seal clearance with the aluminum dome shell.

:he fiberglass-reinforced plastic spinner is not included in the weight and cost

equ_ ions. Lubricating oil is carried in the barrel cavity at sufficient level to cover the

blade retention bearings and the crank pin rollers. The blade angle range is 80 degrees
recaptured from flat pitch.

!

__ategory V. - This 4-bladed, constant speed, full feathering and reversing propel-

ler i_ designed using parameters for the DeHavil]and Twin Otter aircraft. A sectional

drawing and hydraulic schenmtic of the propeller are shown in figures 41 and 42 re-

spectively. The blades incorporate the same aluminum core, fiberglass reinforced

epoxy shell construction as the Category IV prope!ler except there are no counter-
. t

weights. The weight of countemveights for a prope]!er this size becomes prohibitive.

The blade retention incorporates the integral ball race in a steel barrel as in Cate-

gory iV but it was necessary to incorporate a full raze configuration to aid in reacting

moment loads that would unseat the bail bearing. The blade "rocking" condition was of

sufficient magnitude in this propeller that enlarging the retention bearing diameter suf-

ficiently to react the moments incurred a prohibitive weight penalty. A lip seal is

mounted below the retention bearing and the beavi_g is grease-packed to save the weight

of lubricating oil in the barrel cavity with the complex sealing configuration that would

be required around the pitch change links. An outer lip seal is also provided and ball

loading holes and plugs are provided in the barrel to permit the bearing to be assembled.

The pitch change actuator has double-acting pistons pressurized to move the blades

toward both high and low pitch. Two aluminum pitons translate in a steel cylinder with

a stationary steel bulkhead separating them. The length to diameter ratio of the actu-

ator is such that mounting it inside the barrel under the blades is desirable for low

weight. The blades are then actuated by spherical rod-end links from piston pins to

crank pins on the blades. The spherical bearings are lined with reinforced Teflon so

that no lubrication is required. Spherical link bearings were selected to facilitate blade

installation without removing the actuator. The actuator is supported on the barrel

/"
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llan_,_c at the rear and on a barrel-mounted aluminum bulkhead at the front end. This
l,llkhcad also _reacts piston torque with a sliding spline and provides clearance holes for

the blade links.

A four-way control vah, e •spool is mounted inside the actuator piston hub and meters

oil to either the high or low pitch piston. The valve is actuated by an Acme-threaded

screw driven by a gear motor which receives a hydraulic signal from the engine-

mounted, double-acting governor. The screw is grounded axially to the barrel through

the motor housing and acts as an in-place pitch lock towards low pitch in the event of

pitch change pressure loss. Since the screw, valve and actuator piston move together

axially upon signal from the gear motor, a snmll gap is maintained between the screw

and piston at all times. Upon loss of pitch elmnge pressure in the positive blade angle

flight range, the blades are prevented from moving toward low pitch except for the few

degrees represented by the piston-to-screw gap.

The fiberglass reinforced plastic spinner, being optional equipment, is not included

inthe cost and weight equations.

An electric motor-driven auxiliary pump provides pressurized oil to move the

blades to full-feather blade angle as the normal engine-driven pump becomes inactive

due to low engine rpm during the feathering operation.

One side of the lkvdraulie pitch change motor is subjected to pressure maintained at

one half pump supply pressure by a regulating valve at all blade angles above the low

pitch take-off angle. This half supply pressure is biased on the other side of the motor

by metered pressure from the single-acting governor either higher or lower than the

half supply pressure to move toward high and low pitch, respectively. At the low pitch

stop take-off angle, an extension of the piston de-activates the lmlf-pressure valve to

balance the pressures on each side of the pitch change motor preventing blade motion

Jhr.om this low pitch stop angle.

Reversing is accomplished by actuating the reversing lever which activates a re-

versing regulating valve maintaining half supply pressure on the low pitch side of the

hydraulic pitch change motor. The lever also moves a sleeve valve on the engine shaft

which uncovers ports connecting the other side of the motor to drain. A spring-loaded

sleeve regulating valve on the inside of the shaft then meters downstream pressure from

the motor to hold the blade angle determined by the dump port position. Uncovering

more dump ports with the reversing lever causes the blades to move further into re-

verse. Unreversing is accomplished by moving the reversing lever to the normal oper-

ating position. The dump ports in the engine shaft are then blocked-off and the system

returns to normal operation on or above the low pitch take-off stop.

J
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The concept drawings of the three representative propellers were utilized by the

Contractor's weight and cost evaluation gl-oups to obtain a detailed part-by-part weight

and cost figure for each of the propellers. These figures provided a point in each of

Categories II, IV and V from which accurate weight and cost estinmtes could be made

for assessing the accuracy of the generaEzed weight and cost equations particularly as
applied to quiet propellers of the 1980 time period.

Discussion of 1980 Propeiler Weights. - The generalized weig)_t equation was orig-

inally established for high tipspeed propellers and adjusted to the actual weights of cur-

rent general aviation propellers. To check the applicability of tl_s equation to the pro-

jected 1980 low noise propellers, three propellers (Categories II, rv and V) were de-

signed with approxinmtely half the current tipspeed levels and their weights were

calculated. Although the Category IV weight checked the equation quite well (Table X),

the discrepancies were sufficicnt!y large for Categories H and V to make the weight

equation suspect for these low tipspeed propellers.

This weight discrepancy appears to be related to the following factors:

1) Low noise level propellers require blades with low tipspeed and substantial

activity factors. Blade centrifugal loads are low and moments about axes per-

pendicular to the blade axis are sufficiently high so that blade retention size

must be increased to prevent the blade from "rocking" or u_.loading the reten-

tion bearing on one side due to the moments. For this reaso._:, the retention

bearing is oversized and heavier than current propeller retentions wbAch are

basically designed for thrust capacity.

2) Retention weight is a greater proportion of total blade weight.

3) Blade weight is a greater proportion of total propeller weight because blades

rotating at slower speeds require less pitch change actuator capacity than

blades rotating at higher speeds.

The above changes in propeller weight proportions coupled with a large change in'

the "ND" term of the equation (TABLE V) indicate the need to calculate the weights of

more study propellers at different tipspeed values to generate a valid generalized weight

equation. In the absence of such detailed weight calculations, the generalized weight

equation of Table V is the best available guide to general aviation propeller weights. In

using the equation, it should be remembered that actual weights will likely be somewhat

higher than equation weights in Categories I, II and V. Accordingly, the computer pro-

gram retains the original weight equation as defined in Table V.
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Although based on the results of the detailed design study, the weight level of the

1980 quiet propeller configuration for the Category II aircra_ will apparently be signif-

icantly heavier than indicated from the sensitivity study, the weight of the entire pro-

pulsion system is expected to remain approximately the same. Considering the reduced

wei_lts attainable with high speed piston engines as discussed under the sensitivity

study, the 1980 quiet propulsion package weight is compared to the current 1970 propul-

sion paclmge weight for the Cessna 210F aircraft on figure 36.

Discussion of Propeller Costs. - In endeavoring to provide a single basic compu-

terized costing method for all general aviation propellers, the following equation was
derived:

1
C = KZB 0.75 = LF ,,-7-(}I)00 + PP

_T

where K =

C=

B=

LF =

LF 1 =

W T = Propeller weight (lbs)

H = Labor time (hours)

y=

pp =

Z

Constant based on single unit cost for each propeller category,

Average O. E.M. propeller cost based on number of units/year ($/lb)

Number of blades

Learning curve factor for a number of units/year (fig. 14)

Learning factor for a single unit. (fig. 14)

Labor rate (S/hour)

Cost of purchased parts and raw material ($)

LF

LLF I

K - LFI pp]WTB0.75 [(H) (Y) +

i

Note: Y and PP include mark-up for O.E.M. cost.

Single unit cost C1 is obtained by omitting the Z factor from the equation.
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1969 Prope]ler Costs. - Costs of ].969 propellers in Categories H, IV and V were
i taken directly from manufactu_rs' end user price lists and converted to O. E. M. costs

f by applying a factor of 60 percent. Cost and weight for several propellers in each of thethree categories studied were listed and then averaged to obtain the O. E.M. cost/lb.

! (Table VI). With cost/lb and number of blades known, the O.E.M. cost equation was
solved for the factor K for each category using learning factor LF1 for a single unit.

Factor Z was then calculated, using the ratio of learning curve factor based on the num-

ber of propellers manufactured in 1969 to the learning factor for a single unit in each

category. Factors K and Z ax-e listed in Table XI for each of the three categories. The

K an_ Z 'factors were then used to calculate O. E.M. and single unit cost for each of the

three propeller categories. (Table XII.)

_980 Propeller Costs. - The same equations and cost structure (i. e., labor rates

and p_rchased parts cost base) for 1969 were used for 1980. New K and Z factors were

calcu:_ated for 1980 based on propeller configuration, nu%terial and manufacturing pro-

cess hhanges and changes in quantities to be manufactured. As noted in the sections on

Propeller Selections for Conceptual Design Study and Propeller Hardware Concept

Study i a representative low noise level propeller was selected for detailed design study
in each of Categories II, IV and V for 1980.

i _ased on design Concept drawings generated for these propellers, the contractor's
cost evalu_ion group compiled labor time and purchased part and raw material costs

for e_ch of the three propellers. Based on an assumed labor rate of $13.50/hour and

purchased pal"t costs, both reflecting mark-up to O.E.M. cost, new K and Z factors

were !calculated using the quantities forecast for manufacture in 1980 listed in Table XI.

The Category II propeller design changed only in number and size of bk_des and utilized

the same materials and design concept as the 1969 propeller. Propellers in Categories

IV and V were modified to incorporate aluminum core and fiberglass reinforced epoxy

shell blades. This change represents a blade weight saving of approximately 25 per-

cent compared with solid aluminum blades. With new shell design concept and manu-

facturing processes, the blade cost was evaluated as twice solid aluminum blade cost.

• Category V propeller also incorporates a dual-acting actuator with pitch lock which

represents a significant weight saving over a counterweighted single-acting propeller
for a moderate increase in cost.

Cost Summary. - Table XIII shows a comparison of O. E.M. costs for the repre-

sentative propellers as calculated from the original generalized equation where factors

F and E were estimated and hardware study equation where K was calculated •based on

cost evaluation of detailed parts from the concept drawings.
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Agreement of tile costs is goodfor Categories IV and V but a large variation occurs
in Category II. This discrepancy is undoubtedlydueto the weight of the Category II
propeller being higher tlmn expected, as discussed in the previous section. This lowers
the cost/pound accordingly. Dueto the few propellers studied in detail, it is recom-
mendedthat additional propellers at various tipspeeds be _udied to validate both the
weight and eo_ equations. In lieu of this _dditionai study, the generalized cost equation
developed for the sensitivity study is the best available at this time (Table VII). This
equationhas beencomputerized alongwith the weight equation (FABLE V) for general

USe.

IDENTIFICATION OF FUTURE RESEARCH ITEMS

During the course of this study, the Contractor has been identifying certain areas

where the technology utilized in preparing the designa critera and the state-of-the-art

advancements required for developing improved, quiet general aviation aircraft propel-

lers will require further b_udy and research. These a:ceas are presented below with

recommendations for further _udy and research.

Refinements and Extensions to the Generalized Methods and Computer Program.

Xe Integ_rated Desi_%;n Lift Coefficient - Although this propeller blade shape param-

eter was not included as a variable in the performance generalization, a cur-

sory study has shown that increP_sed blade section design lift coefficient is

effective in reducing the activity factor required to provide the performance

and noise levels of quiet propellers, thereby relieving somewhat the increasing

weight trend with reduced noise levels. Accordingly, it is recommended that

the performance generalization be extended to include a variation in integrated

design lift coefficient from 0.3 through 0.8. Along with this extension, the

compressibility correction factor would need to be extended to cover this range

of integrated design lift coefficients. This addition to the method would be in-

cluded in the computer program.

2_ Reverse Thrust - Since it is necessary to know the landing runway distances

for aircraft design and operation, it is recommended that a procedure for com-

puting reverse tlu:ust for a range of velocities corresponding to the landing run

associated with any aircraft configuration with reversing propellers be included

with this general aviation aircraft computational procedure. The analytical

method v_uld be based on the adaptation of an existing analytical procedure and

cover the same ranges of integrated design lift coefficient, activity factor and

number of blades included in the performance generalization. The procedure

would be computerized and included as part of the existing computer program.

/
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Feather Drag - For aircraft with t_vo or more engines, propeller feather drag

is usually required in assessing the engine out performance, stability and con-

trol characteristics of the aircraft. It is recommended that a feather drag

computational procedure for general aviation propellers be developed and in-

cluded in the computer program.

Improved Noise Generalization - As discussed above, the noise generalization

was based upon limited experimental test data on snmll diameter, low power,

low tipspeed propellers. In this connection, Hamilton Standard has been con-

ducting some testing on quiet propellers under Air Force funding. These re-

sults were not available in time to incorporate into the empirical noise gener-

alization. It is expected that new experimental data from other sources is also

now available or will be soon. Also, data on existing high tipspeed general

aviation aircraft are required to verify the accuracy of the method. It is rec-

ommended that a survey be made to obtain all the available experimental data

and that the data be used in modifying the noise generalization as required. The

improved method would replace the present method in the computer program.

5. Weight and Cost Generalizations for the 1980 Time Period - As indicated in the

Propeller Hardware Concept Study section, the generalized weight equation for

1980 could not be adequately corrected for the effects of low propeller tipspeeds.

Studies of additional propellers over a pertinent range of different tipspeeds and

propeller sizes are required to determine the exponents and constants for the

generalized weight equation which will take into account tipspeed effects on

weight. Cost evaluation studies of these additional propellers would also be

conducted to further strengthen the accuracy of the generalized cost equation.

These studies would be conducted for all aircraft categories, in the same de-

tail and with the same advanced nmterials and design concepts utilized for the

three representative propellers of this report. The refined weight and cost

criteria would be included in the improved computer program.
{

6. Engine Weight Cost Generalizations - It is evident from this study of quiet pro-

pellers, that the performance, noise, weight and cost trade-offs should be based

on the total propulsion package including the powerplant and speed reduction

gearing. Accordingly, it is recommended that engine and gearbox weight and

cost be generalized and included in the computer program to provide a more

complete evaluation of the impact of noise restrictions on general aviation air-

craft of the 1980 time period.

o Develop and Publish a Users Manual - With any or all of the above recommend-

ed extensions and refinements incorporated into the basic computer program, a

very useful tool is provided for examining the various trade-off criteria of per-

formance, noise, weight and cost as may be established by each manufacturer

1
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and operator in selecting the optimum propulsion system for quiet advanced
general aviation aircraft. Accordingly, it is recommended that a users manual

be prepared and published covering the complete program. The manual would

hlclude a complete listing of the program witl_ detailed instructions on its use.

Furthermore, all the curves and equations for the analytical methods included

hi the computer program would be presented with instructions of usage in lieu

of a computer. Thus, this users nmnual would present all the detailed instruc-

tion and data needed for computing propeller and/or total propulsion package

performance, noise, weight and cost by computer or by hand.

iAerod_us____t!c Research. - Although the aerodynamic perfornmnce and

noise generalizations developed for this study are based on established methodology,

actual performance and noise test data on these very quiet propellers are quite limited

since only a few such configuration have been tested. Accordingly, it is recommended

that the following experimental research be conducted.

le An experimental quiet propeller should be built for an appropriate general avia-

tion aircraft, for instance the Cessna 210J, and flight tested over a range of

typical operating conditions to establish the performance characteristics of this

propeller.

. As a result of the noise test data survey proposed above, the regions where

additional data is required should be established. Very likely two areas will

be found where test data is not generally available. The first of these is in

carefully controlled acoustic noise surveys on existing moderate to high tip-

speed aircraft. The second is on the very low tipspeed, small diameter pro-

pellers.

For the first area of investigation, it is recommended that experimental pro-

grams be conducted on, for instance a Cessna 210J, to obtain suitable noise

test data for refinement of the generalized propeller noise calculation method.

For example, flyover noise measurements could be conducted under ideal test

conditions on an aircraft with the current, high tipspeed propellers.

The second area would be an investigation with the same aircraft and a low tip-

speed, quiet propeller designed for the performance of the original equipment

propeller. The noise investigation outlined above would be repeated and the
data used to check out and refine the noise calculation method.

. Available test data indicate that engine noise may be a significant contributor to

the total noise level of the propulsion systems of current aircraft. If propeller

noise reductions projected in this study are to be achieved, a study including

the weight, performance, and noise trade-offs of engine mufflers as they relate

to total propulsion system noise should be conducted.
I- _ .... _
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'I .: ::.. i:. ::, !: _:_:. _fly of Integra] Gearbox Propellers. - Lower noise levels in general avia-

:. tion propellers require greater reduction of engine speed to reduce propeller blade tip-

speeds to the required levels. Cost and weight figures for this engine change are of

particular interest to the aircraft manufacturer and user. A natural out-growth of

cl_nges in engi_e gear reduction is the integration of the propeller, including oil reser-

voir and governor control, with the gearbox assembly for significant weight and cost
savings.

!

Meaningful cost and weight studies of either the gear reduction alone or gear reduc-

tion coupled with propeller inte_ration require design concept studies of representative

engines in detail similar to tlmt used in the propeller _udy of this report. From the
I

• results of these studies, credible cost and weight generalized equations could be formu-

lated _or advanced powerplants for general aviation in 1980. The nature of this design
I • • °

studyiwould , of course, require close coordmatmn with engine and airframe manufac-

turer l"

_esign Stud_! of Light_ht, Low-Cost Blades for Advanced Propellers. - In the

course of th_s _tudy, _t became apparent that good visibility for producing light-_'eight

comp6site structure blades economically for 1980 would require additional study. AP-
PENDIX E shows the multitude of material systems m_d processes that are applicable
to fabrication of an advanced blade.

l

1
The lowest co_ blade shell using conventional materials and processes is obtained

with bulk molding compounds in sheet form compression molded in matched dies. Use

of this system is dependent upon the ability to align the reinforcement fibers to obtain

strength in the desired direction (i. e., matching the strength of the n_.aterial to the

stress locations in the blade shell). It is proposed first that the material development

be conducted on specimens which would be subjected to the appropriate laboratory
stre_,-th tests.

Design Study of Prop-Fan/Piston Engine Propulsion Package. - As discussed in

this study, the concept of tbe Prop-Fan directly driven by a high-speed piston engine

offers the potential of a compact propulsion package which meets the performance re-

quirement and the low perceived noise levels (75 PNdB at 500') objectives of this study

with a significant weight saving over today's installations. As was indicated, these con-

clusions were based on a very limited study of the weight for both the propulsor and the

engine. Moreover, no cost estimates were made. In view of the importance of noise

abatement for propulsion systems of advanced general aviation aircraft and the attrac-

tive solution represented by the Prop-Fan, it is recommended that a comprehensive

design study be made of this concept including the complete Prop-Fan/powerplant pack-

age to thoroughly evaluate its potential compared to a quiet conventional propeller pro-

pulsion system. The study should cover Prop-Fan propulsion systems for each of the

aircraft categories except Category I. Because of the uncertainty as to the severity of

the noise restrictions, it is recommended that the study consider noise levels from
75 - 95 PNdB at 500-foot sideline. "

• ° _._o

.,./ 49



_~

i
I
I ....

le

CONCLUDING REI_LARKS

A computer program has been developed for a generalized method of performance,
noise, weight and cost estimation for general aviation propellers.

2. A building block concept permits revised performance, noise, weight and cost

criteria to be easily introduced into the program.

3. Stringent noise restrictions on general aviation aircraft will lead to low tipspeed

propellers with appreciable increases in overall size, weight and cost.

.

o

.

i

i

.

So

9.

10.

Engine gearboxes with approxinmtely twice the reduction ratios of present geared

engines will be required with these hrge propellers.

Advanced materials and manufacturing techniques can be effectively utilized to

offset some of the weight penalties associated with the large, quiet propellers.

Based on limited study, the total propulsion system weight of these large, quiet

propellers coupled to high RPM, lightweight reciprocating engLnes may not be
_inereased appreciably over today's propulsion systems.

}A brief study based on the Cessna 210J aircraft indicates that a prop-fan coupled

l,directly to a high RPM, lightweight reciprocathlg engine offers a compact propul-

!sion package which fu]fills the performance requirements of the aircraft and

meets the low noise objectives of tlds study with a significant reduction in pro-

!pulsion system weight compared to the existing propulsion system.
i

if low noise is not an objective, general aviation propellers of the 1980 time period

incorporating advanced technology can be lighter bt_ probably more expensive

compared with today's propellers based on today's dollars.

Even if low noise and weight are not objectives, the application of advanced fabri-

cating techniques will result in only small cost savings for general aviation pro-
pellers of the 1980 time period.

Assuming that low noise levels will be a prime objective of general aviation pro-

pollers of the 1980 time period, more study and research by the propeller, engine

and aircraft manufacturers will be required to attain this objective with propul-

sion systems and aircraft of acceptable perfornmnce, weight and cost.
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Aircraft Class

Single Eng.
Fixed Gear

Seats

2-_

Cruise Vel.,
MPR

lOO-16o

.J

/

/

Engine Power

100-200

Recip DD

ADVANCED GENER_

AEC_____

Propeller T_q_

Fixed Pitch

2 Blades

s

i

!

i :

i

!

II.

• rIl.

Single Eng. Adv.
Re%a'act Gear

IPR Equip.

Light Twins
Retract Gear

IFR Equip.

Medium Twins

Retract Gear

I?_ Equip

BeavyTwins
Retract Oear

IYREquip.

_-6

_-6

6-11

II & Up

12o-25o

15o-3oo

15o-3oo

175-h0o

15o-300
Reelp DD & Geared
Some_ Small Turboprops

15o-3oo
Reeip DD & Geared

Some._mall [Ik_boprops

25o-h50
Turboprops,

Recip DD & Geared

6_o-15oo __
Turbines

Constant Speed
2 Blades_Some 3 B:

Constant Speed

2 Blades_Some 3 B:

Full Feathers r)ei

Constant Speed

Full Feather, Dei
3 Blades

Constant Speed
Full Feather

Deicing, Reverse
3 and h Blades

i ' i

I ! • i

/



T_ABLE Y

_VIATIOM PROPER STUDY

CIASS IFYCATYON

Appll cation

Student _ Prival

Renta i, ,Aeroba

Adv. Student

Private (Fami] _)

Survey, _ustniss
Private i_(Fami[y)

Survey, Buminess

_e

tic

Gr_ss Weight,
Ibs.

1000-2500

2000-_O00

35oo-6o0o

Executive
Charter, Air T_axl

I:

. large Executive

Charter, Third
Tier Air Liners

8000-12,500

Price Range

$8_5K

_O-50K

ShO-120K

$I00-200K

$_O0-6OOK

Example Aircraft

CESSNA 150, IT2-, Skyhawk
BEECH MUsketeer A23-19

PIPER Super Cub, Cherokee

_SNA Skywagon 180, 206, 207, 210

BE_C_ Bonanza, Musketeer Super 300

PIPER Comanche C, Cherokee Arrow
MOONEYMgOF

CESSNA Super Skywmster, 310Q

BEECH Turbobaron, Y_ron 55

PIPER Twin Comanche C, Aztec D
MOONEY Aerostar

CESSNA hOIB, hG2B, _14, h21

BEECH Queen Air, Duke
PIFERNavaJo 300, Turbo NsvaJo
NORTH AMERICAN ROCKWELL-Shrlke ComMLnSer

BRIT_EN-NORMAN I_SLANDER, Eel_oTw_n Stallion

DEFAVILLAND Twin Otter
MO(NEY MU-2G
NORTH. AMERICAN ROCKWEI_ Hawk Commander

BEECH King Air
HANDLEY PAGE Jetstream
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TABLE V

GENERAL AVIATION

Generalized Propeller Weight Equation:

0.75
ND 0.5 [SH_ _0.

12 (M+I. 0)0"5]

Where:

W T

D

B

IA. F.

N

SIIP

CW

= Prop. Weight, lbs.

= Prop. Dia., Ft.

= No. of Blades

= Blade activity factor

(excludes spinner, deicing and governor)

= l_-op.Speed, RPM (take-off)

= Shaft Horsepower, HP (take-off)

= Mach No. (Design Condition: Max. Power Cruise)

= Counterweight wt., lbs.

Kw and c w factors for use in weight equation are taken from table below:

Aircraft

Class j
Technology

1969 [ 1980

(i) (1)

(2) (2)

(3) (3)

(3) (4)

(3) (5)

I

II

HI

: IV

!

V

(I)

_)

(3)

(4)

Kw = 170, C w = 0

Kw = 180, Cw = 0

Kw = 240

Kw =210

Cw=2.5 (A.F.) (B

• (5) Kw=195, c w=0
Propeller types associatedwith above KW and C w are as follows:

(1) All fixed - pitch props.

(2) McCauley non-counterweighted, non-feathering, constant speed prop.

(2) All Hartzell, All HSD Small props, and feathering McCauley

(4) Fiberglass-bladed, constant-speed, counterweighted, full feathered

(5) Fiberglass-bladed, constant-speed, double-acting.(non-counterweighted), full
feathered, •reverse

J

i

/. j

x,

+ C w
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TABLE VII

GENERALIZED COST EQUATION

C = ZF (3B 0" 75 + E)

C1 =F(3B °'75+E)

where:

C = Average O.E.M. propeller cost for a number of units/year, S/lb.

C 1 = Single unit O. E.M. propeller cost S/lb.

LF
Z -

LF1

LF = Learning curve factor for a number of units/year

LF 1 = Learning etuT_e factor for a single unit.

B = Number of blades.

t

F = Single Unit cost factor

E = Empirical factor
I

Note: i Reference Figure 14 for LF and LF 1 values based on an 89% slope learning curve.

1969 1980

Category F E F E

I 3.5 1.0 3.5 1.0

H 3.7 1.5 3.7 1.5

III 3.2 3.5 3.2 3.5

IV 2.6 3.5 3.5 3.5

V 2.0 3.5 3.4 3.5

•JJ
f_

J
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i

k

i
PR6PE LLER

ENGINE, REQ.

RECIP. ENGINE

GEARBOX

PROPU LSOR

TOTAL

PNL

TABLE IX

_WEIGHT COMPARISONS OF SEVERAL PROPULSION

SYSTEMS FOR THE CESSNA 210J AII_CRAFT
J

1970 1980

PRESENT QUIET

P ROPU LSION PROPE LLER

SYSTE hi SYSTEM

PR OP- FAN

SYSTEM

2 BLADE

6.83 ' DIAM.

102 AF

0.5 CLi

3OO SH:P

2850 ERPM

2850 PRPM

WEIGHTS

IO-520-D

454 LB.

55 LB.

4 BLADE

8' DIAM.

150 AF

0.5 eLi

300 SHP

4000 ERPM

955 PRPM

345 LB.

50 LB.

133 LB.

8 BLADE

3.5' DIAM.

138 AF

0.35 CLi

330 SHP

4000 ERPM

4000 PRPM

380 LB

"106 LB.

509 LB. 528 LB. 486 LB.

NOISE LEVEL

105 PNdB 76 PNdB 77 PNdB

* INCLUDES SHROUD

/

/_ 62



i ¸.

" TABLE X
i

WEIGHT SUMM_RY OF REPRESENTATIVE PROPELLERS FOR 1980

Category

Generalized Calculated

Equation Design Weight

Weight Weight Variation

0bs. ) 0bs. ) (%)

II 98 133 +35

IV 155 150 ' -3

1

V 187 216 +15

j•

_f
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/

O. E. M.

Categgry

11
,

IV

V

TABLE XIII

SINGLE UNIT COST SqJMh_ARY OF REPRESENTATIVE
PROPELLERS FOR 1980

Sensitivity Study

Generalized Equation

(Estimated F&E)

37. 00

36.30

40, 00

Design Study

Equation

(Calculated K)

_/lb.

29. 10

38.50

41.20

Cost

Variation

%

-21

+6

+3

'i

r
j
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CAM SHAFT &

PROP SHAFT NO'l

IN

LARGER GEAR
PITCH DIAM.

_--7:
CAM

SHAFT

PROP °

CENTER TO CENTER

DISTANCE INCREASED

NEW SET CAM

SHAFT & ACC DRIVE:

GEARS

GEAR RATIO 2/I

LONGER DISTANCE

FOR NEW SET OF
GEARS

CE.CRANK SHAFT
I

1) LARGER & LONGER FRONT
HSG TO CONTAIN GEARING

FIGURE 33. TYPICAL ENGINE GEAR REDUC'TION REVISIONS
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APPENDIX A

GENERALIZED METHOD OF PROPELLER PERFORMANCE ESTIMATION

FOR GENERAL AVIATION AIRCRAFT

This appendix provides a generalized performance calculation method for conven-.

tional and multi-bladed propellers applicable for general aviation aircraft operating at

static and in-flight conditions. The method can be used in predicting performance for

cons_tant speed, fixed pitch and two-position propellers. The form of method selected

was governed primarily by the consideration of ease of usage and computerization. Ac-

cordingly, the method incorporates a series of performance maps for 2, 4, 6 and 8

bladed propellers all with 0.5 integrated design lift coefficient, CLi. Adjustments for
activity factor variations are incorporated as well as a limited integ-rated design lift

coefficient adjustment. Furthermore, a compressibility adjustment is included.

Performance Calculation Procedure

The method of calculating the static and flight performance, as described in the

main te>_ section on Technology Identification, is present below. A sample problem

is included as figure 1A for constant speed propellers and figure 2A for fixed pitch pro-
pellers.

Const_mt Speed Propellers. With the airplane flight and engine conditions given,

and the propeller blade characteristics k_own, the procedure as outlined on the sample

computation sheet (figure 1A) is as follows:

A. From known data, complete the top of the computation sheet. Identify airplane,

engine and gear ratio (G. R.) and items 1 through 4 which are number of blades,

propeller diameter (D), activity factor (AF), and integrated design lift coeffi-

cient (CLi). All data in this report are for a CLi of 0.5 with the exception of

the data for 4 bladed propellers which include a CLi of 0.7 and 0.8 as well as
0.5.

B. Determine items numbered 5 through 9 from the airplane flight and engine con-

ditions which have been selected for analysis as explained below:

•1 \
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Item _No.

5. At±itude .... Identifying flight condition

6. SH_P or Thrust There is the option of defining the engine shaft-brake

horsepower/propeller exM computing the corresponding

propeller thrum/propeller or specifying propeller thrust

requirement and computing the corresponding brake

horsepower/propeller.

7. Engine HPM N e - Enghm speed (rev./mill. )

8. Pressure Feet

Altit-ade

9. Velocity V K - Airplane forward velocity (knots, true airspeed)

C. Calculate items numbered 10 through 15.

10, Po/p Density ratio

11. fc Ratio of speed of sound at standard day sea level to

speed of sound at operating condition

i

12. N Propeller speed = Engine RPM x G.R.

VKf c
13. Mach No. Airplane Mach Number -

661.2

14. Cp or C T If item 6 contains SHP, then

i SI_P ( Po/P )x 1011

1 Cp - 2N 3 D5
i

If item 6 contains thrust, then

C T
_1.514x 106 T ( Po/P )

N 2 D 4

15. J Propeller advance ratio- 101.4 VK/ND

D. The following items are read from curves or calculated.

16. PAF or TAF Activity Factor adjustments (fig. 3A).

Use PAF if SI-IP specified in item 6 and TAF if thrust
specified in item 6. _

j" 128 ' •
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17. PCL i

18. CpE or CTE

19. f_ 3/4

20. CTE or CPE

21. TAF or PAF

i

22. TCL i

23. CT or Cp

24. Thrust or SHP

Integrated design lift coefficient adjustment (see items

29 - 31) (PCL i = 1.0 for CLi = 0.5)

CPE = Cp x PAF x PCL i

CTE =C TxTAFx TCL i

If SI_ is specified in item 6, read ,_ 3/4 for the proper
nun_ber of blades (fig. 4A, 6A, 8A or 10A) for the com-

puted J and CPE. For 3, 5 or 7 bladed propellers, an
interpolation is required.

If thrust is specified in item 6, read /33/4 for the prop-
_(_er number of blau _s (fig. 5A, 7A, 9A or 11A) for the

computed J and CTE. For 3, 5 or 7 bladed propellers,
an interpolation is required.

If SHP is specified 9] item 6, read CTE for the proper
number of blades (fig. 5A, 7A, 9A, llA) for the J and

/3 3/4. For 3, 5, or 7 bladed propellers, an interpola-
tion is required.

If thrust is specified in item 6, read CPE for the proper

number of blades (fig. 4A, 6A, 8A or 10A) for the J and

[t 3/4- For 3, 5, or 7 bladed propellers, an interpola-

tion is required.

Activity Factor adjustment (fig. 3A).

Use TAF if SIIP s[ ccl,_ed in item 6 and PAF if thrust
specified in item 6.

Integrated design lift coefficient adjustment (see items

32 - 36) (TCL i = 1.0 for CLi = 0.5)

C T = CTE/(TAF x TCLi)

Cp = Cp/(PAF x PCLi)

If item 6 is SHP, compute thrust where

W __

0.661 x 10 -6 CT N2D 4

po/p

/

fJ
J
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If item 6 is thrust, compute SHP where

2 N3D5Cp
...... SHP- Po/Px 1011

25. Ft Compressibility correction (see items 37 - 41)

26. Thrust (corr.) Thrust x F t

27. _ Propeller efficiency, I? - CT
Cp

J

28. 50% stall check Check proper number of blades curve to be certain that

CPE is to the left of the 50% stall line.

E. Integrated design lift coefficient adjustment (available only for four-bladed

propellers with 0.7 and 0.8 CLi are incorporated in items 29 through 31.

29. PFCL i Read the corresponding value from figure 12A.

30. CPE E Cp x PAF x PFCLi

31. PCL i Read h-om figure 13A and include also as item 17.

The following iterative procedure is required in defining thrust coefficient since

CT = CTv/(TAF x TCT ) and TCT. is a function of CT. Repeat items 31 through 35

until CTE in item 36 equals CTE ifl item 20.

32. C T Assume a C T

33. TFc_
i, i

34. CTE E

Read from figure 12A

C Tx TAFXTFCL i

35. TCL i Read from figure 14A

36. CTE C T x TAF x TCL i

Ii_clude C T for converged CTE as item 23.

F. Compressibility correction (limited to 0.5 CLi )

i ./

s /
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37. MCRIT Read from figure 15A

38. M-MCRIT If positive, use the following procedure to obtain the

compressibility correction, F t. If negative, F t = 1.00

39. PBL Number of blades adjustment is read from figure 15A

40. CPE C CpXPAFXPBL

41. Ft Read from figure 16A and include as item 25.

Fixed Pitch Propeller. - For the fixed pitch propeller, select the design condition
and repeat the computational procedure defined for constant speed propellers (items 1-41).

For the sample case (fig. 2A) the design point is the take-off condition. Only items 1-

28 are included since 29-41 are not applicable. For off design conditions the following

procedure is used:

A. Determine items 42-44 from the airplane flight conditions which have been se-

lected for analysis.

Bo

items 45-50.

45.

46.

For the f_3/4 (item 19),

J range

CP E

471. PAF

48. Cp

a range of SHP's and RPM's are defined as shown in

Assume a range of J's

Obtain the corresponding CPE from the proper number
of blades curve (fig.4A, 6A, 8A, 10A) for the J's

(item 45) and/_3/4 (item 19)

Same as item 16

Items 46 + 47

49. N N = 101.4 VK/JD

2N3D5Cp

50. SHP SHP - Po/p x I0 II

C. The engine performance data is required to define the proper SHP and RPM

for the specific operating condition. For the sample case, it was assumed that BMEP

remained constant and therefore the ratio of engine SHP to RPM is constant and the cal-

culation completed as shown in steps 51 through 60.

/
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51. (SttP/N)prop

52. (SHP/N)constant

Compute(items 50+49)

Items 6 -12

53. N Plot SHP/N (item 51)versus N(Item 49)and select N
corresponding to (SHP/N)constant of item 52

• 54. SHP As defined in item 51

55. J

56. CTE

Adv'_nce ratio as defined in item 15

Read for the proper number of blades (fig. 4A, 6A, 8A,

10A) for the J and fi 3/4" For 3, 5 or 7 bladed propel-
lers, an interpolation is required.

57. TAF Figure 3A

58. C T CTE/TAF

59. THRUST See item 24

60 _ See item 27.

i Two Position Propellers.- The procedure defined under fixed pitch propellers can

be !used for two position propellers where:

A. _ 3/4's are defined for i_vo design conditions and the performance for off de-

sign conditions obtained, or

B. For a given constant BMEP, performance can be defined for the pertinent

operating conditions at several {3 3/4's and the t_vo f_ 3/4's selected which give the best
performance compromise for these conditions.

/
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Airplane

Engine

Reference

1.

2.

3.

4.

o

6.

7.

8.

9.

i0.

ii.

12.

13.

14.

17.

18.
{

19. !

20.

21.

i

Cessna 210J

I{ )othetical

No. of Blades

Diameter-Feet

A1e

Int. Des• CL

Attitude

BHP or Thrust

! Engine RPM

Altitude

Velocity (knots)

_o/_

fc

N

M

Cp or C T

15. J i

16. PAF or TAF

PCL i

Cp E or CT E

CTE or Cp E

TAF or PAF

Figure 1A.

Date 12/6/70 Calc. No.

Sheet No.
0.335G.R.

Calc. by_ R.W. checked by

it

4.
8.0

8.0

150.
150.

0.500
0.500

T. O•
T.O.

820. (Thrust)
300 (Bin _)

2850.0
2850.0

S.L.
S.L.

71.2
71.2

1.00
1.00

I.00
1.00

955.0
955.0

0.1077
0.I077

0.332 (aT)
0.525(cp)

0.945
0.945

1.00 (TAF)
Loo (VAF)

i. 00
1. O0

0.332 (CTE)
• 525(Cp E)

38.2
38.2

0.525 (Cp E)
o. 332 (CTE)

i. O0 (TAF) i. 00 (PAF)

Hamilton Standard Generalized Propeller

Performance Comput.ation .(Iof 2)
,i

/

,-" 133
i

2680

1

AMS

4.

8.0

150.

• 0.700

T.O.

300 (BHP)

2850.0

S.L,

71.2

1.00

1.00

955.0

0.1077

o.525 (cp)

0.945

i oo(PA_)

0.925

0.486(CPE)

37.5

0.S26(CTE)

i.00(TAF



7_

?

i

!

22. TCLi
o

23. CT or Cp

24. Thrust or BHP
t

25. F t

26. Thrust (corrected)

27.

28. Check for 50% stall

i29:

30.

131.

32.

33.

34.

35,

36.

37.

38.

39.

40.

41.

1.0 1.0 0.90

0.332 (CT) 0.525 (Cp) 0.362 (CT)

820 Thrust 300 (BLIP) 894 (Thrust)

1.0 1.0 1.0

820.0 820.0 894.0

0. 598 0. 598 0. 652

O.K. O.K. O.K.

CLi Adjustment.. (Only for 4-bladed propeller with 0.7 and 0.8 CLi )

I_FC Li 1.06

CPEE
0.558

0.925

P _Li 0. 360 0.362
C F

T [_CLi 1.020 1. 020
0.367 0.369

CI['EE

T?Li 0.90 0.90

CT E 0. 324 0. 326

.Cor_resslbfl__!k _ C,o_ ] ect on

MCRI T 0. 248 0.248

- 0. 1403 .--1403M- MCRIT

PBL - -

CpE C - -

Ft 1.0 1,0

Figur e 1A. Ham.ilto n _andard Generalized Propeller

Performance C.omputation (2 .of 2)
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Airplane : Piper Cherokee

Engine Hypothetical

Reference Fixed Pitch

Design Condition

1. No. of Blades 2

2. Diameter 6, 17

3. AF 80,

4. Int. Des. C L 0.500

Attitude

SHP or Thrust

Engine RPM

Altitude

Velocity (knots)

Po/p

fc

N

M

Cp or C T

: J i

16. PAF or TAF

17. PCL i

18. CPE or CTE

3/4

20. CTE or CPE

21. TAF or PAF

22. TCL i

23. CT or Cp

24. Thrust or SHP

25. Ft

.

6.

I.

8.

9.

10.

11.

12.

13.

14.

15.

Figure 2A..

Date 12/6/70 Calc. No. 2680

G.R. D.D. Sheet No. 1

Calc. by R.W. Checked by AMS

26. Thrust (Corrected) 570.0

, 0. 61127.

28. Check 50% O.K.

stall

Off Desi_ Condition

T.O. 42. Attitude Climb

150.0 (SHP) 43. Altitude S.L.

2700. 44. Velocity 70.5

S.L. (knots)

52.5 45, J Range 0.4

1.00
46. CPE 0.065

1.00 47. PAF 1.58

2700,0 48. Cp 0.0411

0.0794 49. N 2897.0

0. 0426(Cp) 50. SHI:' 179.0

0. 320

51. (SHP/N)prop 0.0618

1.58(PAF) 52. (SHP/N) 0.0556

1.0 (constant)

0.0673(CPE) 53. N 2765.0

16.6 54. SHP 154.0

0.115(CTE) 55. J 0.419

1.41(TAF) 56. CTE 0.10

I. 00 57. TAF 1.41

0. 0815(C T) 58 C T 0. 0709

570 (Thrust) 59. Thrust 519.0

1.00 60. 77 -- 0.729

0.5

0.058

Hamilton Standard Generalized Propeller Performance

/
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0.0367

2317.0

82.0

0.0354

0.6

0.048

0. 0304

1931.0

39.0

0. 0202



Ix.

v:
Z
b.I

I-

"-I

<

Z
W

o
h
h
W
0
U

h
<

V
Z
ILl

l=i
,<

I-
Z
bl

0
i,
b...
bl
0
0
n,,
bl

0
D..

i

2:o

1.6i _ ;] :_

'=:÷i i.;+.+t
1.2 L-H L.+i_l

8O

"FTT';,; , _ ,.)

_-'_i!_!i-:_;t_-1_ _

........... I .... t .+
C7;];, +)+?tt 1;[1 rt:':

+-+.,++., ..++ +,+ +_41

_,T_,_:TT- T;T: t-t ; +TI-' :-_

+r+ ++ • .b

]==:I:1r: ,::++4£:;4'.,:,'

......... ::;1,s, li:[,:t

160

ACTIVITY FACTOR, AF

ACTIVITY FACTOR, AF

J,4+; 4 _ T;qT

-:;= !i:fil_;_i-i
+"' ++fl +"+

itl_ +.+l
,:++.- ".i-_., _

++=- £ ......_+ i. J.L: " ++_.C

i+++..........
__:T:q-H:'+-:=
....... ++÷,,,

7 :=-+- 4+_t ++_-+_

l:: +. ::i;t:;:i

:'++_th-i:

i+:: _T2T.....+_'+1;tII

! : i :, -;=4= +A+M--I

t_:-' ;; J _I-t-+-'=

H!i!-:;i :;_
'+11+*,_+4

+,p.r+..+_,,.: +"'_ r-'-_--

i:++i ++:+_

180

FIGURE 3A. ACTIVITY FACTOR ADJUSTMENT

ii../i " -

// 136



i •

i

:I

t.

i

1

i
t

hi

0

7

b.

hi
0

0

0
O.

W

g

i-ra
>
i-

•- j
"Ld

UiO

m i
_0

Z

o_
F-
n_ci

M
<i--

ZUi

_z
b. 0

b. o
,,,_0

Q:O
bl I-

a.b.

4

bl



{!

r:i

1, ¸

A

!
ii

£

i

t

138

I--
m

I-

ob.l

...I
nhl
bin
O0

5
m2i

o_
II-Ul

!-I_1

<m
T__
t)<

ZO

_z

glm
O_
t)

mO

Ill

h



il ".
!

i"

I

i

! •

W
I1.

r:
Z
Id

h
h

0

IE
I11

o

W

I--

h
h

F-.

old
_o ,,.I

-b.l
Cin

.MO

m _1

_Z

OmUl

II_bl

Un-

ZUl
WF-

__z
tuo orum
_d
0

n, o
ul !_

Q.u.

hi

I.u "



,i

,i

o

o

i-
ra
>

!-
o

on.'

,.... j
*-I

131.1.1
I,I1_
_0

5 n
m2i
,e 0

Luhl

ne_

•1" F_

F-Q:
ZO
UlI._

O_z

Mm

0

mO

ILl

!1.

R _

l,/_:o_'SnlOV_l_,/_' .LY :_r"lONV 30V"18

/

/

.-/ 140

o



:7 " "

z

7

.,<

:!
4

i
:i

]

:4
t

i
_z

--L!!7:_:!

•..! : iHi!il

.... t= ::- F.} :i} I t_

!::it-:i.lii::k::::::::l .::::.:;-_: :::::::::::::::::::::: _ al _ :::::::F:.:_:::: ::::;::=

.... i ......... I.......... + .................. = '= z ._ _1 I- .........

======================== ::-:: .:: - _:: ::'::| ::'l _ :: _'|Z ISl v" G. i'l "i" I_ '_ ::l::::I::::t=:;. =. ;::: O
':-1:+"_+: "'- =:_ "'t+: + "'_'V" _1 +. Ol II W .... _:::t: " .

i::!_F_:-_=i::!:tT}i:_:T!iki:::!:;l:i;_]:::!..,_Y!_:i_Z .-I I! . ._. I I I I I I }{i:_}|:. _i }-i !i--
_._:..::! :..'_ ...... : >: ..r.=: . :;_=,h. ;_:+ . Ill w 41=:: =--"-=--_,-'_

:::=I=_.. =..-mr..:=:::::_-:t-::_-:::: =Y'T:.'--_-_---'_'--FjF!_ _ _ _- "_= IE::I:::: ::::_:'._'."

":t :;_ : ....... _:; '.; : ............ : : 4 .... - " " -: : :-_ ":'i:': t: • : ":: :;'m: _::::_:::

:F_ ! i7! ;!i! i.:i! !_ !:._{i!i:i}i!Tii = :7_'-Ziii!: F 71_. ZZii:::!}i::iii: l_:il :i{_ ::]Ti77!!:.:!-::::i'ii-:fi!i! :Z-!.;!:::

::::::::::::::::::::::::: -! " :i : :::_I_ _iI" : :7i : : :. -: : -:l" " ::=::':.ii i:::

" :=i'; .............. +........................ ' .......... I-'}_ o

_ _-_--i :--_T]-_:.,,.:.-;:::: _"i_::-.k.,=-F--_| :: :_=:

•"_:iL!Z__E_I_{_>kii:iq _::._t.i_!il _i:TiE::i_i:i_kki::i !::! it:i: 7::_ ================================:: :=:: :::I:.=._::.:i_ :: :

::::_ ::::::::':::_:::_ ::=:::: :: ................... :_ " 17 " ; .... ; -" •

!ixt:!_!] :_:_ii!!ii_'i!i:ii .i!Zii!:izl:_;Z-:|_;:_-.!i_iiti_:il-._i;q,l.- _-:_ -:_ i--F :i_:i:M:::!.:-:_- :i: :F:_::: ::_::-:::

...._.......,.............. _ ..................., ...... _.... t..........................

_:::.::: , :;.:: ::::=:'- I :: : :: _ : ::_::: ::: ; :-: 'ui ::_:::: :7 _ 7h:-i;!-'_-i :=:,::::

............ :_.:...... :_ i ":::::: ..................... .' ....... -_ ........ :_i:_:::::_i: : _:::: _..... !

=-" ":= -'::i=:: ::::_ ;::::4::: :::::3il .... _ :F:: I " .... ' ................ " ..... _ t........ :':_""

_T F:=:::!::---? :: ::: .:4=: =-'h::::'=: :_:::: :::-::--] - _- • ;..... i ........ : r':-':::l _ : l::':

_;:1::_:=.:-:I:::: _:::_! _:_.t: :_ :::;:- : : ;. :: =:-_.'-:I : ;:: :-:_l-;-: l- --{_-_:::;;::':- ::::/: :=_::_:

]_.ZTTZ_=:=:t::-==;-"b=:t::=......=!.?:::_i!.::;:::_M_.Z.i_=:_:T:_==::=::}:=:_::: :_:K i_!:ZiT:i:= ?. ":Fii_i!!F:_ F'Z'F2!.:E _:!i}i :7:_tF.: i_:i_!i7 o

:::_+:" _" :=:::'=:_= =::-: =-"::--":=': = : :T::=:--f:::_::= :"::::::::: ...... :: ..... :::::::::::::::::::::::

II/i,,l_/" Sl'ilO¥tt I'll iV 3-191,,'V :3OV"I_ - - ......._I

/-
-"" 141

>.

>
w

F-

o_

"" ...I
"b.l

r_o.
bJo

m _1

z o_hi

C_, _1::!
h

u n_
o

w 71J.I
b.lJ-
(.)7

w [.I. _

uJ_
0 o

a_ o
wl-

b/

b.



142

o

o

>.
i-N
>
N

!-

<

u_hl
*--I
.,._I

_0

5 _n
m27

<Z
0:O
o@
mw
i-I:1

-r I_

uilzl

Lu _oWm
_Od

LI

mO

I--Lu

b.l

' :D

b.



I

i.

td
D.

0

Z
td

g
b.
W
0
U

W

]=
0
9.

W

I-

W

>

F-

0

bl

IIl

Z
,<

n_
0

l--
n,
.<

. Z
bl

u_

b.
Ill
0
0

bl

O.

,/
0

W

0

b.

W
_!
.1
Ul
O.
0

_i
0
Z
0

£0
W
a

Izl
I--
,<
ty
t9
Izl
I-
_z
0

0

m
0

0

b.

)/¢o_'Sntclvu )/¢ zv 3"tgNv 3aY"lg

_f

143

o o



t/l_o_ 'S1"110¥_ t/£ .LV 3"IONV ":10V'18

..f !

I

U

7

hi
0

I-
m

e_
"-r
I--

ILl

0
M
g.

Ill

I-
_-- .

U

0

...I

hlhl

I11 I1.
°--

ZU

eeO

o,,.@

--I-
__z

b-LLIIJ" °om

Od
0

mo

n- o

_. ,,<

M

lJ.



FIGURE 12A.

.o

N:_c$-

_-+t-+

_-++,

t-_ ÷+

t-t+e
I.-H ÷

N

.4-.I-+4

1.0 2.0 3.0 4.0

ADVANCED RATIO, J

5.0

CAMBER FACTOR ADJUSTMENT FOR 4--BLADED PROPELLER

(LIMITED TO 0.7 & 0.8 INTEGRATED DESIGN LIFT)

/i

......-" 145



• r

o
tin=, "¢D O O O

!_lOd '.LN3mu.snrov IN:3101.e._-130::) azMoa

/"

146/

/

-\

i

W
W
13.
0

0

b.
hi
0
0

o bl
N
0
0.

Ul
>

Ul
g.
h
bl

0

0

.0

U)
rw
td

.J
td
n
O

n

D
td
D

m
I

n_
O.-_

bJ--
:Eb-
t-b.
u_Ld
DO

Dn.
<W

WO
m_

<0
og

- J,l.I :

b.



co

d

;_;;::1:1 ;4: i _ i:: | : :I ::i :i_ i_,H;!:!i: i i; !lLq'i!: | :i ":

_".................... t ........ _-,- .4d. .--¢- ..........

:',,_:j:i!i!!!!:7! i!iiWK-{iiii }!i!{{ i?_!_?_t!?!!ti[i_',?:i!I !i,:!W!!!?W7":_F;! o

i"_3":::t::r!ii:: ::!iF:i:l_!F::!!;t!i!!,!:i:tii_:; ii:JiiiiW!!!!i!_;:--::l::::_,:::_:,::!:! ::::

_:::_:::'_.|::_ :::: :::::::::::::::::::::::: : . _:1::_:_ :: _::_.:t._-_:_::I:_:::; ::::

::::::::::::::::::::::::::::::::::::::::::::: _ ===========================================I-
0

:_ :=_:q:-::

.................... _................................. _., .... z
:-_I_- _:_:-x z -_ ..... _ × ..... _ .............. _-_.............. 0 Ill

• .., ...... !- ...... ...t ...... ..{.: .......... :i :--i,:::
"_ ......_ i_. ..... _ . . ---4=.... _ -..r_.. --.......... ! .... (J') _ ::.:'.::: :;:: ::'" :::: ::::!:::: :FT_:: :::: IJ.,
::::_:":-: ..... _':'" hI "'" .... I ..... [.- i ........
:""i 'L: :: i:': ::::1::_:: 1"1 :.7: ::::.: :;:: *':::_:Y:_::::F::: :::: :::_':E::: I.IJ

......... _: ":::L'- 121 --.:=t: ILl .... i::..t._:.-] .... _,- .................... 0
::: !:;::t ::: ::;: i-- ::.::-_;.-:_:--4::: I--

._t : .._I ' j .:: _ _.'72.. _-. _ ..... Y.-..'_.. -t -'--_'_

:.'::I.7L: :_:.:|:::: :.': ::':: _ ='_'" :'"I:- 7::: :':* ";: ..... I ................ l ....

":'_'i:_ . i_..... ": "!ti..... _!: _::4:::: ..... ':- '.: _:: -_ '::.',;.'-'-; .-_: :........ 1.... :_ --_.. --
0

"; h

4_;,I:;;;_ .... _..'T_.T:I-..I --T_ :I_I;_: ..... _.%FT_I_._TT_,7_ , .... _,_:=F_.. t .... i_..l .... _._;.

;_!J4q_ -.':: :F;: tl::::+j ;t'.: __-I:=;_ _ ;4::!-_:xI: :::,'::_-_ _:_--: L:-:}_;'.:

_ _.-_:i::.=:!::::ii:i51_:li:-?:_-_:::t.nx: :::::::::::::::::::::: _:_ ..... ;:-_;:;"

=======================_-"4:.'.:t::::_::::[x:: ::x}:::,_::::!::::;:-'=: L_-'/?E!ti?ii;[K.=
_"'" ==============================;:;: _::

•-- d -j'" d o o
/

!701 "'J.N_llai/SRf'OV IN3131._4...-1":IO3 1Sf'INH..L

147

m
I

n-
O

ZZ

I---
rail.

cl o
< 0

ZlI:
"1"

m
taO
ab

WUl
i-.J

IZbl

O.

.d

bl
n_

i



..... 4

ii:i!

.... f
;:::I

_W

::N

.... 1

o
_d

i%1
E÷L;i

!H!U

|_++44
I'++.+-H
I'++'+-_"4

W_4I:
_-,w. i.+

N

I !::i
• -t - ,
• t - -+

:,:::::

.., ...+

::| ,..+

it '

_1-- _ :2 J:l

_ ...+

4-,

ili......... 1

.... 1

- v':::: 1

:"i

O0

v-.

::_ ....... '"_-' :=:_ --'!t

-..-d------*--.....!-!I-!LIii_!:!,ii :

:--_.-.....-.:__:_:2-_-:.-m.-.-d........ _-.d
•_., ............... ,.,

:::1 :: !.1.. :::_,::-:I ::I::::I::: i;-I '.< 'd:::l ::: 'i --d

r;:.-i°- :l_d:ii_i_i..iii:?i_i!_ii!"i_:_!

..........i:::, : O. _ --T.:::::i_÷_ :I ::: ............. t:.:.i::::.:i i-::l
:i:| ! .-*::_:_-L_I _] _i:!:i._ L-4:t!!l :i!!i;!t !_t:

.... x M :I:::;::: tU_ _. :::::::::,_.,: _:1

:::' _ i7_: ::_ 7::':::: :_::: !- T:-_-I

i_!! ::-_

hi
"_ i rl

':.:::::i

:-:_::::l _, 1"2
:::_::::_ o Z

::::_::L-"t w

Lu
::::_::::I 1.1.

0
::-" :I :: ::1 U

iii!it-ti] _ I_
.... , .... _ IM

-----:;:::I 0
:: :: : : :::_--_'

::_::_:_:L_, w
:::!:::::

--';.---_ cl l---

li--!F.ii b.

ID _1"-

78ci '1N3_1S171"CI'4 $30Y78 .dO _38_1714

;:! ::4-
;;_ :::.L_

!k

:H ".-RI

H-;;'4-

;+_ {;{t
_ ;_,_

:HJ i4J

i:'!!] ::: ::::F: : i! _i !iiitii_ _....

.... ' .......' ........... :::k:::t::::_::-: _:;
....... z::..._:..:t_T:_ 7:T:

............. j.:::,_!i :,i_i_ _{!it!i-:!::_iK:iit::i:!fii_!:)::::

:it: .L :2::_

,.4+

!{i" .

......... tl....

!!i:{:_: !×:4::::t::::'::'- L_
:::::::::-_-U_::'t::::i::_ _! :it;::

t+!*

T:_11

o

0

;t::!i_!:
::::I::;1

:t::_:::
[:t-,":;

::::I.::::

::::_:::: o

::::j::::

.., .) ....

::::t::::: 6

;ii :2 p
!?_i}:it_ o n,

!!i_?!ii_ <

::_t:i:2: "<
.:: :::l-z:i7 o

rz_:T::Tg

:.: _. ;++,

:"rttt7:

:2-F:H-:_G?!

,l_ N 0

o o

-LIIdOI_ *I_I'_81NFINI-IDYI,4 7VOlll_IO
/-

..... ///

.//

...I
0
Z
0

Ill
ILl.
1:2
1:2
hi
!--

I,.9
hi

tO
D
.=1
0
<
>-
I-ra
/
u

m

ll)
hi

_E
0
U

Io

D

I-

o
o

f_
0

l-
Z
"ILl



r

- i
i.i

!

,-: c_ c_ c;

:L-! ' _!01 OV-I ,LI. 1718 I SS3_Icl INO:::)

co

c_

0
hi
n

0

o Z
hi

0
m

LL
1,
I,!
0

Iii

0

Ld
>

N --

O
ILl
LL
h
hi

0

hi
"1"

L_
Z
M

Z

h
hi
r_

Z
N

-a
hi

i-
Z

Ifli_.

n_

D
m<
I11 _.
QI-

m_

om
ii_Ul
wn.
mll.

_o
zL)

I,D

W
11:

N

z f

149/150

4,



".4

APPENDIX B

HAMILTON STANDARD GENERALIZED PROPELLER NOISE

' ESTIMATING PROCEDURE FOR FAR-FIELD NOISE

The noise field of propellers may be estimated using this generalized procedure

from the following propeller design and operating parameters:
I

1_ Diameter

Number of blades per propeller (2 to 8 blades)

RPM or tipspeed

Power input per propeller

Location, relative to the propeller(s), of the point at which file noise is to be
defined.

Forward speed

7_ Ambient temperature
I
I

8. Number of propellers
J
t

The noise estimate is accomplished by summing pal_ial levels based on design and

operating conditions. The partial levels are provided in graphical form to mh_imize

calculations.

This procedure is applicable for operating conditions where Hm propeller is stalled

over less than the inner 50% of the blades.

PERFORMANCE CALCULATION PROCEDURE

With the airplane flight and engine condition given, and propeller defined by diam-

eter and number of blades, the procedure as outlined on the sample computation sheet

(fig. 1B) is as follows:

A. From the known data, complete the top of the computation sheet. Identify the

airplane, engine and gear ratio (G. R. ) and items 1 and 2 which are number of

blades per propeller and propeller diameter (D).

/-

._ /_ -/

/

/
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B* Determine items 3 through 9 from the airplane flight and engine conditions

which have been selected for analysis as explained below:

3. Attitude

4. SI_

5. Engine RPM

6. Velocity

7. Temperature

8. Distance

9. Azimuth (O )

'. Calculate or read from

Identifying flight condition

Define engine shaft-brake horsepower/propeller

Ne- Engine speed (rev/min.)

Airplane forward •speed (lmots, true airspeed)

Degrees °F

Observer field point-ft.

Observer field point (directivity): See figure 1B for
definition

the proper curves items 10 through 22 as follows:

Item

10. RPM

11. Tipspeed

12. Rotational

Mach No.

13. L1

14. L2

15. L3

16. DI

17. No. of Props

N-Propeller RPM = Ne x G.R.
7rND

The propeller rotational tip speed - 60 or read
from figure 2B.

i
The rotational Mach No. - Tipspeed _] 518. 7

1120 T

where T = °Rankine for specific operating condition.

The value can be read from figure 3B.

Partial noise level based on SHP and propeller rota-

tional tipspeed (fig. 4B)

An adjustment for propeller diameter and number of

blades {fig. 5B)

Accounts for spherical spreading of the sound to the

location of interest (fig. 6B)

A correction for the directivity pattern (fig. 7B) where

0 degrees is on the propeller axis in the forward direc-

tion. (Note: the pattern is symmetrical about the pro-

peller axis, thus the directivity index for 260 degrees

is the same as that for 100 degrees)

Apply the following corrections for number of propellers:

/

./
.f

1 propeller 0

2 propellers 3.0

152
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;i

18. SPL

J

19. Helical Tipspeed

°

20. Helical Tip

Mach No.

21. PNL Adjustment

22. PNL

3 propellers 4.8

4 propellers 6.0

The overall sound pressure level is the summation of

items 12 through 17

Calculated by taking the vector sum of the rotational tip-

speed mud the forward speed of the aircraft. It can be

read from figure 8B.

Calculated by dividing helical tipspeed by the speed of

sound or read from figure 3B.

The adjustment to convert SPL (item 18) to the per-

ceived noise level (PNL) is obtained from figure 9B for

2 bladed propellers, figure 10B for 3 bladed propellers,

figure llB for 4 bladed propellers, and figure 12B for

6 through 8 bladed propellers. The pertinent informa-

tion for 5 bladed propellers is obtained by interpolation.

Perceived noise level = items 18 + 21.

1-(
1

/1

.J
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Airplane

Engine

G.R.

1.

2.

3,

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Cessna 210J

H_othetical

0.756

No. of Blades

Diameter (ft.)

Attitude

BHP

Engine RPM

Velocity (knots)

Temperature (°F)

Distance (ft)

Azimuth ( e )

RPM

Tipspeed (ft/sec)

Tip Mach No.

L1

L2

L3

DI

No. of Props

_- Items 12 to 17

Helical Tipspeed

(ft/sec)

Helical Tip Mach No.

PNL Adjustment

PNL

No. of Props.

Calc. by

Checked by

2.0

7.0

T.O.

300.0

2700.0

71.0

59 °

500.0

105 °

2040.0

748.0

0.67

84.0

+10.0

0.0

0.5

0.0

94.5

757.0

0. 68

0.5

95.0

R.W.

PROPELLER

BLADE

/
/

OBSERVE. R

FIELD

POINT

Calc. No. 2680

Date 12/6/70

/

/ 0

DIRECTION

OF FO RVCARD

FLIGHT

Figure lB. Hamilton Standard NoiseComputation
/
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/
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APPENDIX C

PROPELLER A[ARKET SURVEY

p

Development of a generalized cost equation requires a forecast of the quantity of

gener_ aviation propellers that the industry will require in the 1980's and how many

propellers a single manufacturer can be expected to sell.

o assist in the forecast, a report, "The Magnitude and Economic Impact of General
Aviation," for UtilityAircraft Council, Aerospace Industries Association by R. Dixon

Speas Associates (RDSA), July 1968, (ref. i) was used. Various referenced sections of

this ,eport were utilized. The forecast of the 1980 aircraft population can be computed

as to]lows and is shown in the table below:

The

Ame_iem_ Economy Prospects and Growth through 1982", McGraw Hill,

Y = 1.08 x (7.14 + 0. 142 x CGNP)

where Y = thousands of aircraft in fleet in year Z

CGNP = billions of current Gross National Product for the year (Z-l)

current Gross National Product, CGNP predictions may be found in "The

(ref. 2).

i
I

i

Year Z

1
Total Population of General Aviation of all Types

CGNP @ 2% Inflation

(z-l)

833.6 Billion1968

1969

Population in Z

135, 552

1979 1640.8 Billion -

1980 - 259, 344

The previous table shows the projection method used in the referenced report to deter-

mine the total fleet population. This population was divided into ten categories of which

five were used in tables of this general aviation study. The categories include aircraft

with gross weight less than 12, 500 lbs. A comparison of the categories in the reference

1 RDSA Report and this Contractor's general aviation study is shown below:

1Reference 1, Section III, Figure 8
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CategorX RDSA Report Hamilton Standard

I

II

HI

IV

V

_.lthough these
it

Y

Single Engine 1 - 3 seats Single Engine 2 - 4 seats

Single Engine 4 + seats Single Engine 4 + seats

Multi Engine 600 I_rP Light Twin 300 HP

Multi Engine 600 HP Medium Twin 450 HP

Turboprop Turboprop 1500 HP

categories are not exactly comparable, there is sufficient compatibil-
y for cost estimation purposes.

he following table was taken from the RDSA report, (reference 1):

Annual Sales of New General Aviation Aircraft - Total Fleet

ear Domestic2 E_ort 3 Total Units

1969 11, 250 3, 200 14, 450

1980 18, 990 5, 500 24, 490
!

Domestic annual sales is determined in RSDA Report by subtracting the total fleet

pbpulation for successive years (not shown) times a factor for fleet retirements

(approx. 30%). Export annual sales were based on 25% of domestic annual sales.i
tl

The breakdown of the total fleet population into the five categories for 1969 and 1980

was taken from the RDSA Report. The percent of the total fleet for each category

was determined from it and factored into the total units for the 1969 and 1980 to

arrive at the yearly units for each category. These results are shown in the follow-
ing table:

2Reference 1, Section HI, Figure 26

3Reference 1, Section III, Figure 28

°J
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Composition of General Aviation Aircraft Fleet Population

Category I II HI IV V

.-?

1969

Total (5

Categories)

Tot',d Units 46, 600 67, 100 12, 400 3,510 765 129, 7754

% Total 35.1 51.91 9.48 2.71 0.59 100

Yearly Units 5 5, 100 7, 500 1, 370 393 86 14, 450

1980

Total Units 58, 700 143, 900 26, 000 8, 700 4, 800 242, 1004

% Total 24.3 59.2 10.8 3.7 2.0 100

Yearly Units 5 5, 950 14, 600 2, 650 905 490 24, 490

The yearly units must be further broken down into the amount of units that a Single

manufacturer would produce in 1969 and 1980. Consequently, the final data from

the RDSA Report shows the related investment of three aircraft compmlies which

produce 75% of all general aircraft by value and 90% by volume.

Investment Ratios of Aircraft Companies

Company 1967

Beech

Ces sna
I

Piper

Total

$ 1, 832, 687 12.42

9, 152, 975 62.32

3,709, 224 25.26

$14,694,000 100.00

4About 95% of total fleet as established previously, so annual sales figures above

used.

5Yearly Units = Total Annual Sales of New General Aviation. Aircraft x % Total.

J
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One propeller manufacturer contacted claimed that he manufactured all the propeller

types used on Cessna reciprocating engine aircraft, and that he sells to Cessna 60%

of the propellers for each of these aircraft. There.fore, a single major propeller

nmnufacturer could, for example, produce a ye_'ly quantity of propellers equal to

37.5% of any category, as seen by multiplying investment ratios of 62.3% from the

previous table by 60% of the categories. Assuming this to be the case, Table 1C

shows the number of propellers that a single manufacturer w_J!d produce in each

category for 1969 and 1980. This table represents a probable upper limit to the
fraction of the propeller nmrket available to a single propeller manufacturer for

both the current market and that projected for 1980.

TABLE 1C

1969 AND 1980 PROPELLER h__NUFACTURE SUMMARY

Category

!

II

III 6

IV 6

V 6

1969

Aircraft/ Props/

Year Year

5100 5100

7500 7500

1370 27407

393 7867

86 1727

Props/Mfr/7

Year

1910

2810

1030

295

65

1980

Aircraft/ Props/ Props/Mfr/7

Year Year Year

5950 5950 2230

14600 14600 5470

2650 5300 1990

905 1810 680

490 980 368

• I

6Twin propeller aircraft

7Prop/_Ifr/Year - Prop/Year x 0.375

j/
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APPENDIX D

COMPUTERPROGRAMFOR GENERALAVIATION AIRCRAFT PROPELLERS

Performahce, noise, weight ,and cost generalizations based on the methodology dis-

cussed in the main tex-t were computerized. With this computer program, sensitivity

studies can be made which permit the evaluation of trade-offs among these factors for

various propeller configurations. Variations in propeller diameter, activity factor

(80-200), and number of blades (2-8) can be evaluated. The program is limited to 0.5

integrated design lift coefficient.

Specific cost criteria based on a unit cost factor, a learning curve and manufacture

qum_tity is included as well as the option of inputting these qum_tities.

The computer deck is designated Hamilton Standard deck H432 and is programmed

in FORTRAN V. The followhlg axle the pertinent input/output instructions.

Program Input

The first two cards include the card number in column 3 and any legal Hollerith

punched in columns 4 through 80. The third card contains the following input data in a

(I3, 3X, 10F6. 0) format:

1. Card number
I

2. Number of engines

3. Airplane classification (Table ID)

4. Flight design Mach number

Items 5 through 11 include the various cost options.

the cost criteria built into the computer program is to be used.

Code all of these items as zero if

It is defined as follows:

x

/-

C = ZF (3B'75 + E)

C 1 =F (3B "75 + E)

/
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Where:

C -

C 1 -

Z -

LF -

LF 1 -

B -

Average O.E.M. propeller cost for a number of units/year, S/lb.

Single unit O. E.M. propeller cost, S/lb.

LF

i-F1

Learning curve factor for a number of units/year

Learning curve factor for a single unit

Number of blades

F - Single unit cost factor

E - Empirical cost factor

The 89% slope learning curve is used and F, E and quantities are defined as follows:

1970 1980

Category F E Quant_y F__ E Quantity

I 3.5 1.0 1910 3.5 1.0 2230

II 3.7 1.5 2810 3.7 1.5 5470
i

t IH 3.2 3.5 1030 3.2 3.5 1990

IV 2.6 3.5 295 3.5 3.5 680

V 2.0 3.5 65 3.4 3.5 368

If any deviations are required, the following additional information must be coded.

Learning Curve Variation: It is based on assuming that a learning curve is a straight
line when plotted on log log paper. The learning curve is replaced as follows:

5. Learning curve factor for single unit

6. Learning curve factor for 1000 units

Unit Cost Factor, CI: If a revision in unit cost is required, code as follows:

7. Unit cost for 1970, S/lb.

8. Unit cost for 1980, S/lb.
l

J
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1

J

Quantities Variations:

as follows:

To investigate the effects of quantity changes on cost, code

9.

ii0.

ill.
J
I

The fourth card contains the following input data in a (213, 9F6.0) format.

Initial quantity to be used

Increment of quantity

Number of different qu,-mtities

1. Card number

2. Number of operating conditions with a maximum of 10

3. Initial diameter

4. Increment in diameter ff a range of diameters are to be computed

5. Number of diameters

6. Initial activity factor

7. Increment of activity factor if a range of AF. is to be computed

8. Number of activity factors

9. Initi,%l number of blades

10. Increment in number of blades if a range of blades is to be computed

11. Number of number of blades

Subsequent cards are coded as follows with (3X, I3, 10F6. 0) format for each operating

condition. The number of these cards must be equal to the number specified in 2 on card

.

o

2.

3.

4.

5.

6.

o

8.

Code 1 for defining condition with SHP Code 2 for defining condition with thrust

BHP or thrust per propeller

Altitude in ft.

Velocity in knots, true airspeed

Temperature in °F

lrND
nitial tipspeed, _-_ , fps

Increment of tipspeed if a range of tipspeeds are to be computed

_Number of tipspeeds.

! //¸
J

• _. jJ_. ,
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t Distance of field point at which noise is to be computed; directivity for peak

noise is automatically used; the noise calculation should be made for takeoff

conditions only; code = 0. when no noise calculation is to be made.

10.

il.

For!subsequent eases, repeat all the input data previously speeified.

Code = 1. for computing the tipspeed corresponding to 50% stall. This should

only ,be used for takeoff conditions.

Code _- 1. if cost and weight are to be computed for the operating condition.
This condition sh_ld be a takeoff condition.

Program Output

The input data prints out initially and then the pertinent data under the following
headings:

ls

2.

e

4.

DIAM-FT - propeller diameter, ft.

T.S. FPS - tipspeed, fps

THRUST or SHP - dependent on which option selected

PNL - perceived noise in PNdB; value corresponds to the number of engines

specified in the input.

The following cost and weight data prints out when computations are requested.

5. QUANTITY - number of units to be included in cost computation

6. WT- LBS - propeller weight, lbs

7. $COST - propeller cost in dollars

The weight and cost are included for both 1970 and 1980 tec_hnology.

8. ANGLE - propeller blade angle in degrees at 3/4 radius which is of particular

interest in analyzing fixed pitch propellers.

The following data is included as additional information. For example, from an examina-

tion of these parameters, an indication of the presence and magnitude of compressibility

losses and the blade loading characteristics may be established.

FT -compressibility correction

M- free stream Mach number
!

, YJ /.
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11.

12.

13.

I

t
I

t

" 101.4 V kJ - advance ?:: ,o -
ND

SHP (Pc�p) i0ii
C1_ - power coefficient = 2N3D5

1. 514T ( Po/p )
CT - thrust coefficient =

N2D 4

where Vk- velocity in knots, true airspeed

N- propeller speed, rpm

D - propeller diameter, ft.

SItP - horsepower

Po/P - density ratio

T - propeller thrust, lbs.

For the option where tipspeed is varied,• the calculations are made for the input ranges

in the foI_ovdng order.

1. Tipspeed

2. Diameter

L 3. N_Imber of blades

4. Ac;tlvity factor

5. Operating condition

For the clarion where tipspeed for 50% stall is to be defined, the computations are made

for the hlput ranges L._the following order:

1. Diameter

2. Number of blades

3. Activity factor

4. Operating condition

The following warnings or messages print out.

. 'D_UT ERROR IW=I2, IC=I2 ' - the input item specifying whether the horsepower

or thrust option is required has been included as other than 1. or 2., the only

options available

i j'
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,

i4.

i5.

m

,

'ILLEGAL ACTIVITY FACTOR = F8.1' -- the input AF exceeds the permissible

80-200 AF range .

'ILLEGAL NUM-BER OF BLADES = FS. 1' - the input number of blades exceeds

the permissible 2-8 blades

'ADVANCE RATIO TOO HIGH' - check to see that input diameter, rpm, and

velocity are correct. The advance ratio limits are 0 to 5.

'FAILED STALL ITERATION' - problem encountered in definLug tipspeed cor-

responding to 50% stall. If this mess_ge is encountered; check input for SITP,

RPM, altitude, velocity, and diameter

******* - print out under PNL indicates that the propeller is operating at a

condition where it is more than 50% stalled

******* - under SHIP or TI_{UST indicates that this condition is off the limits

of the performance curves

Sample Cases

Coding for three sample cases of the input are shown on figure 1D and the output

presented as figures 2D through 4D respectively. The sa_r, ple cases are presented in
the following order:

1. The condition is defined by SITP, tipspeed variation snd request for cost calcu-

lations based on the information included in the computer program.

2. The condition is defined by thrust and tipspeed variation.

3. The condition is defined by SI-IP, tipspeed requested for 50% stall and cost on

the basis of a span of quantities.

Computer Deck

The flow chart for the computer program is shown on figure 5D and a listing is pre-
sented as figure 6D. The computer program has been run on a UNIVAC 1108. Approx-

imately 2000 operating conditions are computed per minute.
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le

Aircraft Class

S_ngle Eng.
F_xed Gear

IL Single Eng. Adv.
Be%z_et Gear

IFR Equip.

!YII.
L

liYV.

Ve

Light Twins
Retract Gear

IF_ Equip.

Me_lum Tvins

Retract Gear

IPR Equip

Beavy Twins
Retraet Gear

IFR Equip.

Cruise Vel.,
Seats MPH

2-_ I00-160

-6 _0-25o

I,-6 15o-3oo

6-11 15o-3oo

11 & Up 175-h00

Engine Power

100-200

Recip DD

15o-3oo
Recap DD & Geared

Some Small Turboprops

150-3oo
Recip DD & Geared

Some_nmll Turboprops

25o-h5o

Turboprops,
Reelp DD & Geared

_o-15oo
Turbines

ADVANCED GENERAL"

AIRCRAF'I

Propeller Ty_

Fixed Pitch

2 Blades

Constant Speed
2 Blades-Some 3 B_

Constant Speed

2 Blades_Some 3 B3

Full Feather, Deic

Constant Speed

Full Feather, Deic

3 Blades

Constant Speed
Full Feather

Deicing, Reverse
3 and h Blades

/"

.J

-I

i_ / _/)
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ii : ....

i!
_VIATION PROPELLER STUDY

iCLASS IFI CATI0[
_pplica ion

:!I _ l
! Student t P_Ivate

Rental, A_robatic

Private (Family)

Survey, Bu=ine_m

_i_te(_mily)
Survey, Buminea_

I
Executive

Charter, Air Taxi

large Executive

Charter, Third
Tier Air Liners

_des

J
1

Groins Weight,
Ibm.

1000-2500

2OOO-_000

3500%0O0

6ooo-8ooo

8000-12,500

$20-50K

$_0-120K

$100-eOOK

_O0%00K

/

J

.//

/

/
./

!
I

| •

Example Aircraft

CESSNA 150, IT2, Skyhawk
B_! h_:sketeer A23-19

PIPE_ Super Cub, Cherokee

CF_SNA Skywagon 180, 206, 207, 210

B_CH Bonanza, Musketeer Super 300

P!'PER Comanche C, Cherokee Arrow
MOONEYM2OF

CLL_SNA Super 8kyms=ter, 310Q

Bh_CH Turbobaron, Baron 55

PIPER Twin CoNmnche C, Aztec D
MOOMEY Aeromtar

C_SNA I_OIB, hG2B, 41_, k21

BEECH Queen Air, Duke
PIPFIR.NavaJo 300, Turbo NavaJo
NORTH AMERICAN ROCh_LLTShrike Commma_er

BRI'ITEN-NOP.'UAN.IBLANDER, Hello TwimStalli_

DEHAVILIAND Twin Otter
MOOREY _J-2G

NORTH AMERICAN ROCKWELL Hawk Commmaer

BEECH King Air
HANDLEY PAGE Jet_tremm

i

' &..
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I.!

_IP FO_ _AIN

CONMON/AFCoR/AFCPE,AFCTEtxFT

COM_ON/AST_K/CP_ST,CTAST

CONNON/CPECTE/CPE,CTE_LLLL

DIMENSION FCIIo),ALTPR(II ),PREsS_(II),_ORO(IoI

DIRENSION DISTIIOI,COuANI2,11),COsTTOIIO),COSTBO(I0)

CONNON /ZINPuT/ BHP(10),TH_uST(10).ALT(I0) IvKTAS(1014T(10)_TS(10)

| t I_IC(I_).NOFID,DD_ND.AF.DAF.NAFe_LADN._LA_t N_L.DTS(IOIqNDTS(10)

2.D|STtXNOE._TCON.ZMwTQSTALIT(10} tCLFI.CLFtCK?01CKS0tCAMT_DAMTtNA_T

3,DCOST(IO)

DATA (ALTP_II)_ I=I,II)/0,_I0000,,20000,,30C00,,40000,_50000, '

X60000",?O000,_OOO0,_90000,_IcO000,/

DATA IP_EssRII),I=I,II)/I,O,,6B77,,4_9_,,2970,,I_61,_1145,,0707B,.

x,Oaalg,,O2?al,,OIB99,,O1054/

DATA/_LANK/6 H /

?Of CONTINUE

WRITE (6,I)

I FORMAT (_It, 19x_HA_ILTON STANDARD COMPuTE_ DECK N0, H432t/I?x_COMP

IUIES PERFORNANCE,NOISE,_EIGHI,AND COST FOR'/26xtGENERAL AVIATION P

2_OPELLE_S_)

CALL INPUT

DO ?00 IC=I,NO_

NCOST=DCOST(IC)+,01

IF ¢STALIT(IC),LE,,50) GO TO ?I0

NDTSIIC)=I0

DTS{IC}=0, 0

?I0 CONTINUE

IW= IWIC(Ic)

IW=l HP INPUT

lw=2 THRUST INPUT

IF {I_,EQ, I,O_,Iw,EQ,2) GO TO 3

WRITE I6,2) Iw,IC

2 FORMAT( _ INPUT ERR0_, IW = _12_ _ IC = _ 12 )

GO TO 700

3 CONTINUE

COMPUTATION OF DENSITY RATIO

IF(T(IC))I00,100,160

I00 IFIALT(IC)-360_C,)I20,120,1a 0

120 T(ICI=518,688-,GO356*ALT(IC)

GO TO 180

I_0 T(IC)=3_9,988

GO TO 180

160 T(I)=T(IC)+459.69

180 TO=_18.69

TOT=TO/T(IC)

FCIIC)=SQRT(TOT)

CALL UNINT Ill .ALTP_tP_EsSR_ALT¢ IC)IPOP_LIMIT)

RORO(ICI=I_o/IpOPeTOT)

AF LOOP

AFT=AF-DAF

WRITE (6,706)

?06 FORMAT ('0_,IBx_0PERATING CONDITIONt/)

IF(NCOST-I)290_200_90

_00 IENT=|

CALL COST (wTCON_BLADTICLFI,CLF.CK?0.CKBO_CAMT,DAMT_NAMT_CQuAN(I_!

|I_WT?0_WTSo_CO_T?0_COSTS0tCCLFI_CCLF_CCKT0_CCKBoIIENTI

GO TO (210,_30),Iw

_!0 WRITE (6.2_0) _HP(ICItxNOE,CCLFI

2_0 FORMAT(, SHP =t,F?e0tgxtNOe OF ENGINES =e.FSe0igXeUN1T FACTOR

IL,C, =oF_.2)

FIGURE 6D. LISTING OF ADVANCED GENERAL AVIATION PROPELLER PROGRAM (PAGE 1 OF 14)
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GO TO 250
240 FORMAT( ° THRUST =l,F?eO,gXUN Oo OF ENGINES =oIFBeOqgXoUNIT FACTOR

ILeCo =tFBo2I

230 WRITE (6_24CITHRUST(IC)qxNOEeCCLFI

25_ IFICKTOeGT,o,ooRoCKBO'GTIO °) GO TO 255

WRITE (6,2521 ALT(IC),ZHwT,CCLF_vKTAS(IC},wTCON_T(IC),DIST(IC)

252 FORMAT( ° ALT-FT =oIF7eOIgxODEsIGN FLIGHT Ne=oF5e3tgx, 11000 FACTOR

ILoCe ='F5.2/o V-KTA5 =°_FTolegxICLAss IFICATION =eFB,0/I TEMP R

2=o_FT=o,gxoFIELD POINT FT, =oF5oo)

GO TO 270

255 wRITE (5e260) ALT(ICI,ZMWT ,CCLFqVKTAS(IC) _wTCON, CK?O,T(IC},

IDIST(IC), CKBO

260 FORMAT( o ALT--FT =o,FTeO,gxoDESIGN FLIGHT N==oF5o3,gxqio00 FACTOR

[ LeE= =eF5e2/° V-KTAS =atFT=ItgxeCLAssIFICATION =eF_eO_9x°uNIT

2COST 1970 =o ,F5=I/o TEMP R =o,FT,OtgXOFIELD POINT FTo =OF5=O,

39XOUN1T COsT IgBO =oF5,1)

GO TO 270

290 GO TO (I0,12)*!W

10 WRITE (6,li) :HPIIC),xNOE

II FORMAT( o SHP =e eFTeOq23XINO_ OF ENGINES =aiFB,0)

GO TO 14

12 WRITE (6.13) THRUST(ICIIxNOE

13 FORMAT( t THRUST =°tFTeo,22x°NO = OF ENGINES =oqF5,0)

14 wRITE (6,151 ALT(IC),ZMWT,VKTAS(ICI,wTCON,T(IC),DIST(IC)

15 FORMAT( ° ALT-FT =°.F?,O,23x°DEsI GN FLIGHT M==O,FB=3/° V-KTAS =o,

IFT, I_23X,CLASSIFICATION =o,FB.0/e TEMP R =e.F?=O.23xtFIELD POINT

2 FT =',F5=o}

270 DO 1200 IAF=I.NAF

AFT=AFT+OAF

IF(AFT,LEo2oO==AND,AFT-GE=80=} GO TO 182

WRITE(6,1BI ) AFT

i81 FORMAT( o ILLEGAL ACTIVITY FACTOR = ,,F_=I)

GO TO 1200

|82 CONTINUE

C _ N0e OF BLADES LOOP

8LADT=BLADN-OBLAD

DO I000 I_=I,NBL

BLADT=_LADT+DBLAD

IF(_LA_TeLE.8.=AND=_LADT.GEe2,} GO TO 88B

wRITE(6,Be7) 5LADT

887 FORMAT( ° ILLEGAL NO_ OF BLADES = o,FBel 1

GO TO IOGO

B88 CONTINUE

C PRINT APRROPIATE HEADING

i WRITE (6,20) BLADT,AFT

120 FORMAT(OQa,e NUMBER OF BLADEs=°oF3eoIIBx°ACTIVITY FACT OR=I_F_°O)

i IF(NCOsT_EOel) GO TO 500

GO TO (21=_),IW

2| WRITE (6,221

2_ FORMAT(°O', o DIA'FT • T_seFP5 THRUST PNL ANGLE FT M

1 J CP CTO/)

GO TO 30

_4 WRITE(6,25)

R5 FORMAT(°OO,o DIA=FTe Tes=FPs SHP PNL ANGLE FT M

1 J CP CTO/)

GO TO 30

500 GO TO (510,5501,IW

• 510 WRITE (6,5_0)

52C FORMAT(e0°,30X a-i* 1970 TECHNOLOGY _t* _ 1980 TECHNOLOGY *t_e/

! o DIAeFTe T=SeFPS THRUST PNL QUANTITY WT-LBS $COST QUANTITY

FIGURE 6D. LISTING OF ADVANCED GENERAL AVIATION PROPELLER PROGRAM (PAGE 2 OF 14)
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c

i

Z _':_ _S $COST "_ ANGLE FT M J

GO TO 30

550 WRITE (6t560)

560 FO_HAT{OOIq30X 0_ 1970 TECHNOLOGy _

I i D1A,FTt TIsiFPS sHP PNL QUANTITY

2 WT-LBs $COST ANGLE FT M

30 COnTINuE

IL|NE=ILINE+6

OIAMETE_ LOOP

DIA=D-DD

DO 800 ID=IqND

DIA=DIA+DD

TIPsPEED LOOP

T|PSPD=TS(IC)-OTS(IC)

NTS=NDTS(IC}

DO 600 ITS=!_NTS

CTAST=BLANK

CPAST=BLANK

TIPSP_=TIPsPD+DTS(IC)

MACH NUMBER CALCULATION AND ADVANCE RATIO J

IF (vKTAs(IC))300q320o300

300 ZMS=oCOISI2eVKTAS(IC)_FC(IC)

GO TO 340

320 Z_S=TIPsRD_FC(IC)/II20o

340 ZJI=5,3og_VKTAs(IC)/TIPSPD

IF(ZJI,LEoS,0) GO TO 342

WRITE(6,341) ZjI

341 FORNAT(O ADVANCE RATIO TOO HIGH = oo FB,4)

GO TO 600

342 CONTINUE

CP CTa/)

_ 1980 TECHNOLOGy XXX_/

wT-LBs $COsT QUANTITY

J CP CTO/)

CTSTL o

C ITERATION ON CT OR CP TO GET DO PERCENT STALk TIPsPEED

IFIN=O

IF (STALITIIC),LE6,50) GO TO 399

CALL CPCTAL (IsTALL,ZJIoBLAOTtCPSTLtCTSTL)

GO TO (711tTI2Itlw

?If CONTINUE

CP=BHPIIC}_IO,EIO_RORO(IC)/(2,0_TIPSPD_3{DIAe_2_6966,)

CALL PERFM(IqCP_ZJI,AFT,BLADT,CT.ZHS,??IO)

42I CT=CTSTL/AFCTE

: CFSTL=CPSTL/AFcPE

THRUSTIIC)=CT_TIPSPD*e2{DIA_2/(Io515Eo6_RORO(IC))_364,?6

IF (ABs(CP -CPsTL),LEe.OOS*CP) GO TO 713

TIPSPD= CBRT(BHP(IC)elO_EIO_RORO(IC)/(2,_DIA_Z_6966e_CPSTL)}

GO TO 709

712 CONTINUE

CT=THRUST(IC)*I.51SEO6*RORO(ICI/(TIPSPD_tZ_DIA_t2_364,76)

CALL PERFM(I.CPtZJI,AFT,BLADT_CT_ZMS,7710)

451 CP=CPSTL/AFCPE

CTSTL=CTSTL/AFcTE

BHP(IC)=CP_2oO_TIPSPD_t3_DIAit2/(iO.EIOtRORO(IC))_6968,

IF (ABS(CT -CTsTL)eLEo_OOStCT) GO TO ?13

TIPSPD = SQRT(THRUST(IC)el_5!SEO_RORO(IC)/(DIAt_2_364e?6_CTSTL))

709 IF (NTSeNE_ITS) GO TO 600

WRITE (6t5@8) cPE_C_STL_CTE_CTSTL

598 FORMAT ( o FAILED STALL ITERATION CPE CPSTL CTE

1 / • o to 4FBe_)

713 IFIN=?710

GO TO 720

C END OF TIPsPD ITERATION 50 PERCENT STALL

C CALCULATION OF REQUIRED CP OR CT

FIGURE 6D. LISTING OF ADVANCED GENERAL AVIATION PROPELLER PROGRAM (PAGE 3 OF 14)



399 IF(Iw--I)400q400Q430

400 CP:BHP(IC)*IO.CIO*RORO(IC)/(2oO*TIPSPDW,3_DIA**2.6966. )

CALL PERFM (i oCPtZJI.AFT_BLADT.CT.ZMS.LIMIT)

42U THRUST(IC)=CT*TIPSPD**2*DIA**2/(I.515EO6*RORO(IC})*364o?6

IF(C.TAST.NE.BLANK) TH_uST(IC}=999999999999999.

GO TO 460

430 CT=THRuST(IC)_I.515Eo6*RORO(IC)/(TIPSPD,e2.DIA**2,364.76}

CALL PERFM (2qCP.zJI.AFTtBLADT.CToZMS.LIMIT)

450 BHP(IC)=CP.2.0,TIPsPD*_3*DIAW*2/(Io. EIo_RORO(IC)).6966 ,

IF(CPAsT.NE.SLANK) BHP(IC}=99999999999999,

460 CONTINUE

720 CONTINUE

P_R-=O.O

ISTALL=O

IF(DIST(ICI.LE.G.) GO TO 461

CALL ZNOISE (BLADTtDIA.TIPSPD.VKTAS(IC)oBHP(IC}.DIST(IC).PNL.

]FC(IC}tXNOE)

CALL CPCTA L (IsTALL.ZJI.BLADT.CPSTL.CTSTL)

IF(ISTALt..EQ. 2I PNL:9999@999,

46I CONTINUE

WT70:9999@.

WT80=99999,

COST7@(1):99999.

COST80(1)=99999,

|F (NCOST-|) 730,7R5_730

IF(NCOST,EQ, IICALL WAIT(wTCON,ZMWT,BHP(IC)IDIA,AFT,BLADT,TIPSPD,

IWTTOQwTSO)

IENT=2

CALL COST (wTCON.BLADT.CLFI.CLF.CK?O.CKBO.CAMT.DAMToNAMT.COuAN(I_ |

I).WTTG.w180.COsT7OoCOSTBO.CCLFI.CCLF.CCKToqcCKBo_IENT)

GO TO (570.580),Iw

570 WRITE (6.57_}DIAoTIPsPD. THRuST(IC)qPNL.COuAN(I.I}.wT70.COST70(1).

ICOuAN(241}.wTeo.COsT80(l ).BLLLLQ×FTqZMSqZJI4CP.C T

575 FORMAT(2F7,0,Fo,o,F6,0,2FS,0,Fg,0,2FS,0,Fg,o,FQ, I,F6,3,F?,44F8,3i

|2F8,4)

GO TO 585

580 WRITE (6,D75) DIA,TIPSPD,_HP(IC},PNL,COuAN(I,|),WTT0,COST?0(| }t

ICOuAN(2,I},wTS0,COSTS0(|),BLLLLtXFT_ZMS,ZJIoCP,C T

585 IFiNAMT-I) 40,A0,586

586 DO 588 I:2,NAM T

WRITE(6,587) CQuAN(],I),wT70,COST70(1),CQUAN(2,1),WTSO,COSTSO(1)

FORMAT (29x,aFB,O,Fg,0,2FB,O,Fg,0)

CONTINUE

GO TO 40

GO TO (3|,3a)tlW

IRITE(6,32) DIA,TIPSPDoTHRUST(IC),PNL,BLLLLtxFTqZMS_ZJItCP,CT

FORMAT(F7.2_F?,ooFg,0qF6,0,F6, I,FB,31F?,4,FB,3,2F8,4}

GO TO _0

34 WR|TE(6,32) DIAITIPsPD,BI'_(ICI,PNL,BLLLL,XFT,ZMSiZJIICP,CT

40 CONTINUE

IF(IsTALL,EQ, _) GO TO 800

IF(IFIN,EQ,?710) GO TO 800

725

587

588

730

31

32

600 CONTINUE

800 CONTINUE

I0o0 CONTINUE

I200 CONTINUE

700 CONTINUE

GO TO 701

END

olP F0_ COsT
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10

2O

lO0

40

50

60

70

9O

110

120

130

14,J

200

1000

olp

i0

.t

FIGURE 6D.

SUBROUTINE COST (ITCON,BLAOT*CLFI,CLF,CK?O,CKSO,CAMTiDAMT,NAMTe

ICQuAN i.iTTOoWTSO*COSTTOoCOSTSO,CCLFIoCCLF,CCKToICCKSOtlENT)

DIMENSION COuAN(2olI)oCOSTTO(IO)_COSTSO(IO),ZFFAC(2ISIoZQuAN(2tSIe

IZEFAC(5) - -

DATA (zFFAcil,l},i=lq5)/3oSo3e?t3e2t2e6q2e0_

DATA (zFFAc(2_l)tlzloS)/3eS_3eTo3.Zt2o_3e4 /

DATA (ZEFAc(l)tl=lqS)/loOoloS,3e_,3eS,3.5 /

DATA (ZQ_AN(l_l)_l=l_5)/1910oQ281Oo_lO30e_295ee65e/

DATA (zOuAN12,l)ol=lQ5)/2230.,5470o.1990e,680ei368e/

ICONciTCON ÷o0|

GO TO (5,]00)elENT

IF(CLF|)I0qI0t2O

CCLF1=3o2|78

CCLF=I*02

GO TO lo00

CCLFI=CLFI

CCLF=CLF

GO TO 1000

IF(CKTO)40_4G,_O

CCKTO=ZFFAC(|,ICON)_13.0_BLADT_.?5+ZEFACIlcoNI)

GO TO 60 --- -

CCKTo=CKTo __

IF(CKBo)7otTo,90

CCK_o=ZFFAc(2,1CON)I,(3oOiBLADTi_o?5+ZEFAC(IcON))

GO TO 110 -- -

CCKBO=CKSO

IF(CAMT)120,I20,130

CQUAN(|_I)=zOuAN(IolCOI_ .-

CQuAN(2t_|)=ZQUAN(2,ICON)

GO TO 140

CQUAN(-Iel)=CAMT

CQuAN(2tl)=CAMT

XLN=(ALOG(cCLF)-ALOG(CCLFI))/6.@0775527

DO 200 I=|,NAMT

COSTTO(I)=CCKTo_ExP(ALOG(CQuAN(IoI))tXLN+ALOG(CCLFI))_WT?O/CCLF|

COSTBO(1)=CCKSoeEXP(ALOG(CQuAN(2ti))_XLN+ALOG(CCLFI))_wTSO/CCLFI

CQuAN (IoI+I)=CQuAN (Iol)+DAMT

CQuAN (21I+I)=cQuAN (2ol)+DAMT

CONTINUE

_ETuRN -

END -

FOR wAI-T "

SuBROuTINE wAI T (wTCONoZMWT,BHP,DIA,AFT,BLADT,TIPSPDoWT?0,WTS0|

IFtwTCONoLEeOe) _ETuRN --

ZND=TIPsPD*60./3_I4159,

zN=ZND/DIA

ZK2=(DIA/Io.)tl2

ZK3=(BLADT/4e)_te7

ZK4=(AFT/Iooo)_ee?5

ZKS=(ZND/2OOOO_)_e5

ZK6=(BHP/Ioe/DIA_2)tteI2

ZKT=(ZMWT+I.G)_e5

ITFAC=ZK2tZK3_zK_ZK_iZK6tZK? '

WTCON DEFINES AIRPLANE CATEGORY.

|WTCON=WTCON

ZC=2_5*BHP/zN_z_WT/DIA_AFT_BLADT

GO TO (|O_20o30140_50)_lwTCON

WTTO=ITO,ewTFAC

WTSO=WTTO

GO TO 60

LISTING OF ADVANCED GENERAL AVIATION PROPELLER PROGRAM (PAGE 5 OF 14)
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20 WT70:IBO._wTFAC

WT_O=_T70

GO TO 6O

30 WT?O=_40.*wTFAC+ZC

WTB0=wTT0 '

GO TO 6Q

40 WTT0=2_G,*wTFAC+ZC

wTBO:210.*wTFAC+ZC

GO TO 60

50 WT70=_40,_wTFAC+ZC

WTB0=I95.*wTFA C

40 RETURN

I END

FOR INPUT

SUBROUTINE INPUT

DIt_ENSION DIST(10I
DIMENSION TITLE(J4)

COMMON /ZINPuT/ BHP(10),THDUST(10I,ALT{ I0),vKTAs(I0).T(|0I,TS(10)

I,IwICIIo),NoF,D,DDiND,AF,DAF,N_F,BLADN,DBLAD,NBL,DTS(IOI,NDTS(IO}

2,DIST.xNOE,wTCON,ZMwT,STALIT(IO),CLFIICLF,CK70,CKSo,CAMT,DAMT,NAMT

3,DCOsT(10)

DO 3 I:I,2

BEAD (5,1) TITLE

i FORMAT (13A_,Ap)

WRITEI6,2) TITLE

FORMAT (_OI,13A6,A2I

3 CONTINUE

READ (5,4) IDuM.xNOE,wTCON,ZMwT,CLFI,CLF,CK?O,CKBo,CAMToDAMT,CNAMT

READ (5,4) NOF,D,DD,zND,AF,DAF,ZAF,BLADN,DBLADqZNBL

4 FORMAT(3×I3, 12_6,1)

ND : ZND+,OI

NAF= ZAF+.01

NBL = ZNBL+,01

NAMT=CNAMT#,OI

DO 6 IC=I.NOF

READIS,4) IwICIIC),BHPIIC),ALTIIC),vKTASIIC).TIIC), TSIIC),

IDTS(IC),ZNDTS,DIST(IC),STALIT(ICI,DCOST(IC}

NDT5(IC}: ZNDTS

IF(IwIC(IC}.EO, I} GO TO 5

' THRUST(IC)= BHp(IC)

BHP(IC)= 0,0

5 CONTINUE

6 CONTINUE

RETV_N

END

elP FOR ZNOISE

SuBROuTINE zN01SE (BLADT,DIA,TIPSPD,VKTAS ,BHP ,DIST ,SPL,

IFC QxNOE)

DIMENSION PNLA(20IiPNLB(10)qPNLC(13qT,_IIDIAM(20)t

IBBL(4},TMTH(20I

DATA ITMTH( I),I=1,13)/03,.35,._,.45,,5,,55,,6,,65,-7,,75,,8,,B5,,9

X/

DATA (PNLCII,I,I),I:I,13)/-2.5,-I.8,-I.0,-0..8,1.4,1.B,2,0,2,25,

X2,75,3,5,_,9,5,3/

DATA (PNLC(I,2,1),I=I,13)/-5,5,-4,5,-3,_,-2e0,--,9,-,2,,0,,3,,75,

XIo3,2,I,3e0,4,O/

DATA (PNEC(Ie3,1I,I:I,13)/-6,5,-6, I,-5.6,-Ao99i--308,-2,6,-I,6,-I,,

X--o75,--e4,,4,106,301/

DATA (PNLC(I,_,I),I=ItI3)/-ToS,-?e25,-Te,-6eg,--6,et-6,3i-5,0t-209,

X-lo9,-Io4,-.6,,a,a.I/
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DATA {PNLC(I,_,I),|=],]3)/-9,_4-9,75,-g,Q_-9,g,-9,75,-9_3,-8,5,

X-7,_,-6,3,-5.0,-3.5,-I,5,*9/

DATA IPNLC |,6,1),|=1,13)/-]0,6,-10.8,-|0,9,-10,9,-]0.6,-|0_3,-9,6

X,-8.6_-7,5 -6.2_-4,6,-_-8.-*_/

DAT A (PNLC 1,7,I),I:I,13}/--I 1,4,-I 1,6,-II,?,--I 1,7,-II,5,-II,2,

×--I0,_,-9,4 -8,3,-7,0,-5,_,-2,6,-I,6/

OAIA (PNLC |,] ,2),l=I,13)/-,25,,70,1,7_2,m6,3,0,3,3,3,3,3,5,3,7,

X_,I,4,6,B*3,6.7/

DATA (RNLC |,2,2),l=|,15)/--],3,-.6,,2,,6,],4,1,7_2.a,3,0,3,a,3,_,

X3,5._,3,6,_/

DATA (PNLC 1,3,2),I=I,13]/-3,6,-3,0,-2,I,-I,2,-,3,,_,,95,1,2,1,E,

X1,9,2.4,_,_,5,0/

DATA (PNLC 1,4,2),I=|,|3)/-5,7,--_-8,-3,8,--2,7,-I,7,--,8,--,2,,0,,I,

X.3,,8,|,7,_.6/

DAIA (PNLC 1,5,_)o1=1,13)/-6,5,-6,0,-5,4,-4,8,-4,3,-3,6_-3, l,-2,5,

DATA (PNLC 1,6,2}, I=1,13)/-7,6,-7,4,-7,3,-7,2,-6,9,-6,6,-6,1,-5,4,

X-4,5,-3,3,-2,0,-,4,1,3/

DATA {PNLC 1,7,2),I=1,13)/-9,7,-9,7,-9,7,-9,5,-9,4,-9,0,-8,5,-7,8,

X-6,9,-5,9,-_*B,-2,9,-,B/

QATA (PNLC I,l ,3), ]=1,13)/2,1,2.8,3._,3,7,4,1,4,4,4,6,4,75,5,0,

×5,3,5,B,6,5,7._/

DATA (PNLC 1,2,_),I=I,13)/,2,1,0,2.0,_,?,2,4,3,5,3,_,3,6,_,B,4,2,

XAeT,_eD,@,Q/

DATA (PNLC 1,3,3),l=],13)/-I,2,-,7,,I, .75,1,4,I,_,2,3,2,5,2,6,

Xg,0,3,S,_,_,6,a/

_ATA (PNLC 1,4,3),l=I,13)/-2,6,-2,2,-] ,6,-I,G,i,5,,0,,4,,7,1, I i

XI,7,2_,3,_,4,8/

DAT A (PNLC 1,5,_),I=I,13}/-4,7,-3,9,-3,2,-2,5,-I,8,-I,3,-,7,-,B,

X-,_,,3,|,C,_*0,3,6/

DATA IPNLC 1,6,3),l=|,13)/-6,5,-6,l,-5,5,-4,9,-4,2,-3,7,-3,1,-_,5,

X-I-9,-I,3,-,5,,7,2,5/

: 0ATA (PNLCl[,7,3),|=|,13)/-@,3,-?,7,-7,3,-6,@,-6,3,-5,7,-5,1,-4,5,

X-3,8,-3,0,-_,0,-,7,1,3/

DATA (PNLC_ I,I,_},I=I,|3)/4,0,4,3,4,7,5,4,5,9,6,3,6,3,6,3,6,4,6,6,

X7,0,7,6,9,0/

DATA (PNLC_ 1,2,4),1=],]3)/3,2,S,3,3,5,3,6,4,0,4,5,5,| ,5,7,6,0,6,0,

X6,1,6,6,7,6/

DATA(mNLC( ,3,4),I=1,13}/2,1,2*4,_,7,3,0,5,3,3,7,3,9,4,0,4,2,4,5,

DATA (PNLC, 1,4,_),I=I,131/I,3,1,6,1,8,2.I,2,3,2,5,2,7,3,0,_,3,3,6,

DATA (PNLC |,5,a),l=1,13)/,25,,5,,7_,l,0,1,3,1,5,],8,2,1,2,4,2,8,

X3e4,4,_,5,4/

_AT A (PNLC 1,6,4},I=I,13)/-2,3,-I,8,-I,3,-,8,-,S,-,I,,3,,5,,8,1,2,

XleS,2,5,3,6/

DATA (PNLC 1,7,a),'|=I,13)/-5,0,-4,5,--3,7,-_,5,-_,3,--_,8,-I,4_-_,0,

X-,7,-,2,,5 1,3,2,5/

DATA (DIAM l),I:1,7)/5,0,6,5,_,5,11,,I_,5,18,,25,/

DAT_ E_L /_,,3,,4,,6,/

TMT = SeRT(TIPSPO**2+(VKTA$

NBB=I

IB=BLADT-I,0+,001

GO TO (2,2,2,5,6,6,6),IB

KK=I8

GO TO ?

NBS=A

KK=|

GO TO ?

KK:4

/,5925)_2)/1120,*FC

FIGURE "6D. LISTING OF ADVANCED GENERAL AVIATION PROPELLER PROGRAM (PAGE 7 OF" 14)

t_

./
t



.J

0IP

NBB=4

7 CONTINUE

DO 8 K=KKqNB8

DO £ I=1.7

9 CALL 5NItAT (13_TMTH(1),PNLCII,IQK).TMTt PNLA(I) .LIMIT)

B CALC uNINT ( 7.DIAM(I),PNLA(1 ).DIA, PNLB(K).LIMIT )

PNLD = PfJLB(KK)

IF (IB-Eo.S) CALL uNINT(4,BBL(I ),PNLB( I},BLADT,PNLD.L IMIT)

#MT = TIPSPD/II20.

sPL = |C7.7+ 6.69*ALOGIBHP )-4.34*ALOGIBLADT_*2*DIA{*2*DIST**2/

×xNOE) + 38.1" #MT + PNLD

IFILIMIT*N/.0I SPL=DQ£999*

_ETuRN

END

FOR CPCTAL

SuBROuTINE CPCTAL (IsTALLqZJI,DLAOT*CPSTL.CTSTL)

CONMON/CP&CTE/CPE_CT£

DIMENSION CTSTAL{IO,4),CTSLL( a }

DIMENSION CPSTAL(16,a},ZJSTAL(I6),CPSLL(4),B(4)

DATA (CTSTAL(Itl),I=I,9)/,125.,ISI,,172,'IBT.'204,o21B'*233"°243t

1.249/

DATA (CTSTAL(102)_l=l,Dl/e268,,309,,3a3,'369,*387,eA04*'420''435*

1,451/

DATA (CTSTAL(I,3),I=I.9)/oA01,.457,'a97,*529,'557,e582''605'*639"

1.651/

DATA (CTSTAL(I,4),I=I,9)/-496,,577,'6281o665"°695,'720'°742'°764'

1,785/

DATA(CPSTAL(I,I),I=I,9)/,05,,12,,22,,35,.49,,65,,82,I,OI'I'19/

DATA(CPSTAL(I,2}, |=I,9)/.16,,29,,49,,75,1,05,1-37,1"74,2"13,2"53/

DATA(CPSTAL( 1,3),I=I,9)/,30,,47,,75,L.I,I.51,1,96,2,41,2"S6,3"30/

DATA(CPSTAL(I,aI,I=I,9)/,45,,71,1*C3,1,AO, IoBg,2ea5,3,06,3,AS,4,1/

DATA B/2,,4,,6,,8,/

DATA (ZJSTAL(1),I=I,9)/O,,,4,,8,102,1"6,2"O,2"4,2"8,3"2/

ISTALL=O

IB=BLADT

IBT=MOD(15,2}+I

GO TO (I,2),IBT

I KK=IB/2

NBB=KK

GO TO 3

2 KK=I

NBB=4

3 DO A I=KK,N_B

CALL UNINT (9ozJSTAL,CTSTAL(I,

4 CALL uNINT(g,ZJSTAL,CPSTAL(I.

CPSTL =CPSLL (KK)

CTSTL =CTSLL (KK)

CPST=CPSLL(KK)

IF(NBB-KK} 5,5,6

6 CALL uNINT(NBB,B,CPsLL,BLADT,CPST,LIMIT}

CALL uNINT (NBB,B,CTSLL,BLADT,CTsT,LIMIT}

CTSTL = CTST

CPSTL = CPST

5 CONTINUE

CPST=CPST*Ie|0

IF(CpE,GT,CPST) ISTALL=2

RETURN

END

olP FOR PERFM

SuBROuTINE PERFM {Iw,CP,ZJI,AFT,BLADT,CT,ZMS,KIMIT)

II,ZJI.CTSLL( I},LIMIT )

I).ZJI,CPSLL( I},LIMIT}
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COM_GN/AFCo_/AFCPE,AFCTE,XFT

COh_ON/CPECT£/CPE,CTE,BLLLL

COMNON/AST_K/CPAST,CTAST

DIIVLENSIQN AFvAL(6),AFCPC(6,2),AFCTC(6,2),AFCP(7},AFCT(7),×LB(4},

X ]NN(7)tZJJ(7),CTT(7),CPP(7)QCTTT(4),CPPP(4)*CPAIqG(IOtTI4),

XCTANG(IO,7,4),BLDANG{ IO.7),NO(7),BLL(7),BLLL(?)

XAZJCL(O),Z_CRL(O),CPEC(|4),_LDCq(14,4),Z_N_C(5)ICPEEL(]5),

xZFT{ |5,5),×FFT(5)

DATA/ASTE_K/6H******/

DATA (BLDANG (l tl)l I=l _10)/0.,2.,4o,6., lO.,14o,18ei22e,266,30./

DATA (BLDANG ( 1,2},I=1,6)/I0,,15,,20,,25,,30,,35./

DATA (BLDANG ( 1,3),I:I,8)/I0,_15,,20,,25._30,,35,,40,,45, /

DATA (BLDANG ( 1,4),I:I,8)/t0,,35,,30,,35,,40®,45,,50,,55, /

DATA (BLD_NG ( I _5),I=I,?)/30.,_5,,40e,45,,50,,55,,60./

DATA (BLDANG (1,6), I=I,I0)/45,,¢7,5_50,,52,5,55.,57,5,60,,62,5,65,

X,67.5/

DATA (BLDANG (I,'7), I=I,6)/57,5,60.,6_,5,66,,67,5,70,/

DATA (CPANG (i,I,I),I=I,I0)/,0165,,0165,,0188,,0_30,,0369_,058e,

x,091_,,1340,,I_16,,2212/

DATA (CPANG (I,2,1),I=I,6)/,0215,,0459,,0829,,1305,,1906,,2554/

DATA (CP_NG (I,3,1),I=I,8)/-,CI_9,-,00B8,,0173,,0744,,141_,,2177,

X,3011,,380_/

DATA (CPANG ( 1,4.1 ). I=|,8)/-.0670.-.0385..02B5..]304..237_,.3536,

X,4624..5535/

DATA (CPANG (I,5,1).I=I,7)/-.|150.-.02B],.1056.,2646,.4213..5860,

X.709|/

DATA (CPANG (I,6.1),l:|,]O)/-.]|5|i,O070,.1436,,29|O..n3451.574a,

X.7|42..8506..9870.I.II75/

DATA(CPANG( 1,7,1),1=1,6)/-.2427,.078a,.42421.7770,1.1 ]64,1.4443/

DATA (CPANG" ( 1,I,2).I=I.10}/,C311.,C220,.0360,,0434_.0691..I074,

X.1560,.2249,o31CB.on026/

DATA (CPANC (I.2.2).1=I _6)/.0_80..0800..1494,._364,.3486..4760/

DATA (CPANG (1,3,?),|=!,8)/-,022e,-.0[09.,0324_.|326,.2578..399.

X.566_,.7227/

DATA (CPANG (Iia,2),l=I,8)/-,!252.-.0661..0525.,2388..4396..6554_

X.8916. 1.07_3/

DATA (CPANG (I,5.2),I=I,7}/-.2113,-.0480,,1993,.4901 i.7884,I,099,

X|,3707/

DATA (CPANG ( 1,6.2),1=I,I0)/-.2077,,0153,.2657,,5387,.8107, 1,075,

X|,34]8.1.5989, I.8697.2.1_38/

DATA (CPANG (I.7,2).l=1,6)/-.450@..1426..7858,l.448,2.0899,2.713/

DATA (CP_NG (I,l,3).I=I,I0)/.0450.,046!..051l,.0602,,0943,,1475,

X,213B..2969,,40:5..5237/

DATA (CPANG ( |,2.3).I=I.6)/.0520,,I065,.2019,.3230,.4774,.5607/

DATA (CPANG (I,3.3),I=IIS)/-iOI6S.-IOOSS,.O457,,|774,,3520I,SD06,

X,7833.|.0_6/

DATA (CPANG (114.3),l=I,8)/-.|678,-.0840i.0752,,3262,.6085,.9l_7,

xle_449,lebA20/

DATA (CPANG (I,5,3),|=I,7)/-e29C3,-.0603,.2746,06803,1009891

'Xl.5353,].9747/

DATA (CPANG ( 1,6,3).I=I,I0)/-.2783..0259,,3665,,7413,1.1215,

X|.4923,1.8655,2.2375.2,6058,2.9831/

DATA (CPANG (l,7,3),I=|t6}/-.6!81..1946._.O758,l.995|,2.S9771

X3e7748/

DA_A (CPANG (|,i,4),l:1.10}/,0577..0591,.0648..075|,.I|4l..|783,

X,_599,,35511,4682,,5952/

DATA (CPANG (I,2,_).I=|,6)Io0650,.1277,.24_l,.39a7,,5803.,8063/

DATA (CPANG (l,3.4),I:I.8)/-.0079,-,00_51.0595,0Z13_,.4266i,6708,

X,9519, l,2706/

DATA (CPANG (llA,A|,l=l.8}l-,189a,--eO908,eO956,,39421,7416.1ela07,
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Xl,_308ql*9459/

DATA ICPANG (|,5,4)o|:I,7)/-,3390,-,0632,,3350,,83}5,1,3494,

X|,590,2,4565/

DATA (CPANG ( 1,6,4),|=1,10)/-,3267,,0404,,45aO,,gOSS,l,3783,

Xl,B424,2,306.2,7782,3e2ag2,3,705B/

DATA (CPANG ( 1,7,4),I=l ,5)/-,7506,,2395,I,315.2,4469,3,5711,

X4,6638/
DATA (CTANG (I,I,1).I=1,10)/,0303,,0444q,0586,,0743, ,1065,,1369,

X. I608,,i?67,,I848,,IaS6/

DATA (CTANG (I,2,1),|=I,6)/*0205,,0691,,1141,,|529,,]765,,1780/

DATA (CTANG (I,3,1),I=I,8)/-,0976,-,0566,,0055,,0645,,1156,,1589,

X, 1S64,,Ie41/

DATA (CTANG (l ,4,I),l=I,8)/-,1133,-,06_4,,0111te0772,,1329,,1776,

Xe202,elSal/

DATA (CTANG (I,5.1).l=I,7|/-ol132,-o0356,e0_79,.116l,oI?11,o2111,

X.2061/

DATA (CTANG (I,6,1).l=l.I0)/-.0776,-.0159,o0391.o0808.*1279,.1646

X,.1964,,221_,,2414,,2505/

DATA (CTANG (I,7,1),I=I,6)/-,1228,-,022],,0633,,1309,,1858,,2314/

DATA (CTANG (I,1,2),1=I_10)/,0426,,0633,,0853,,1101,,1649,,22041

X*2676,,307I _,3318,,2416/

DATA (CTANG (I,2,_),1=I,6)/,031e,,I 116,,1909,,2650,,3241,,3423/

DATA (CTANG (I,3,2),I=1,8)/-,1761,--09_0,,0083,,1|14,,2032,,2834,

X,34GT,,359_/

DATA (CTANG (1,4,2),1=I,8)/--,2155,-,1129,,01e8,,1385,,2401,,3231,

X,3S50,,3690/

DATA (CTANG (|,5,a),I=I,7)/-,2137,-,0657,,0859,,2108,,3141,,3894,

X,4095/

DATA (CTANG (|,6,2),I=I, lO)/-,14_7,-,0314,,069S,,1577,,234a,,3013,

X,3611,,4067,,4457,,468!/

DATA (CTANG (I,7,2}, ]=1,6)/-,2338,-,0471,,1108,62357, ,3357,,4174/

DATA (CTANG (I,l,3),I=1,10)/,0488,,0732,,Og99,,130I,,2005,e2731,

X,3398,,39S2,,A427,,a648/

DATA (CTANG (I,2,3),|=1.6)/,0375,,|393,,244_,,3457,e4356.i4931/

DATA (CTANG (l,3,3),I=I,8)/-,2295,-,1240,,0087,,1443,,a687,,3808,

X,4739,,5256/

DATA (CTANG (l,4,3),I=1,S)/-.2999,-e1527,,0235,,1853,,3246,,4410,

X,5290,,5467/

DATA (CTANG (I,5,3),I=1,7)/-,3019,-,0907,,I1541,2871,-429,,5338,

X,Sg5a/

DATA (CTANG (l,6,3),I=I, lO}/-,2012,-,0461,eOga2,,2125,,3174,,4083,

X,489l,,55_9.,6043,,6415/

DATA (CTANG (l,713),I=1,6)/-,3307,-,0749,,1411,,31|8,,4466,,5548/

DATA (CTANG (l.I,4)Ql=I110)/00534.00795,.I084,.14211.2221,.3054.

X.3_31..4508,.5035,.5_92/

DATA (CTANG (l,2,_l,|=1.6)/.0423,e|58B..2841,.4056.eS157,16042/

DATA (CTANG (l,3,4),l=I,8)/-,260@,-,1416,,0097,,1685,,3172,,4526,

X,5655,,653_/

DATA (CTANG (l,A,4),I=l,8)/-,3615,-,1804,,0267,,2193,,3870,i5312,

X,6410,17032/

DATA (CTANG (I,5,4),1=1,7)/-03674i--61096,01369i,3447,,5165,,6454,

X,7308/

DATA (CTANG (I,6,4), 1=I,10)/-,2473,-,0594,,I08_,,255_,,3830,,49331

X,5899,,6722,,7302,,7761/

DATA (CTANC (I,7,a),l=l,6)/-e4165,-,lO_O,01597,03671,05_89,06556/

DATA (AFVAL(I),I=1,6)/80,_IO0,t125,,150,,I?5,_200,/

DATA (AFCPc(I,I),I=I,6)/I,67,1,37,I,I_5,1-0,,881,,81/

.DATA (AFCPc(I,a),I=I,_)/I,55,I,33,1,I_9,_,,,8_O,,8_/

DATA (AFCTC( I,I),I=I,6)/I,39,1027,I,123,1,0ee915,,865/

DAT A (AFCTc(I,2),I=I,6)/Io46,I,ag,leI43,1,O,e890,,84/
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j •

.120

100

119

160

180

2OO

C

2O8

210

DATA(XLB(I ),I=l q4)/2,,4,,6,,8,/

DATA(ZJJ(1),I=I,7)/O,,,5,1,,I,5,2,,3,,5,/

DAT_(INN(Ii,I=I,7)/IO,6,B,_,7,10,6/
I+

DATA (NJ{I), I=I,7)/I,2,3,_,5,6,7/

DATA (ZJCL{I),I=!,8)I,O,.5,1,,I,5,2,,2,5,3,,3,5/

DATA (ZMCqL( I)+I=I,8)/,0,,132,,261,,371,,461,,526,,571,,599/

DATA {CPEC(I),I=I,14)/,01,,02,,03,.04,,05+,06,,08,,I0,,15,,20,,25+

1,30+,35+,40/

DATA (BLDCR( I,I),1=I,14)/I,84,I,775,1,75,1,74,I,76,1,78,1.80,I,81,

I 1,835,I,B5+I,_5,I,B75,I,88,1+88/

_ATA (BLDC_(I,2), I=I,14)/I,,I,,|,,I,,I,,I,,I.,I,,I,,I,,I,,I,+I,,I,

I/

DATA (BLDCR(I,3), I:l,14)/,SSS,,635,,675,,710,e73B,,745,+758,,755,

I+705+,735,,710,,725,,7_5,,72_/

DATA (8LDCR(I,4),I=I,|4}/.4|5,,460,.505,,535,,560,,575,,600,,610,

1,630,,630,,610,,605,,600,,600/

DATA (CPEEL(1),I=2,15)/,OI,,O2,,O3,,OA,,05,,06,,OS,,IO,,|5,,20,,3,

1,4,,5,,6,+7/

DATA (ZMMMC(I),I=I,5)/,O,,02,,O_,,06++08/

DATA (ZFT(I,I)+I=I,15)/I,,I,,I+,I,,I,,I,,I,,I,,I,,I,,I,,I,,Io,I,+

XI./

DATA (ZFT(I,2),I=I,15)/,95,,975,,g84,,9_7,,99+,991,,9_2,,993+,994,

|,995,,997,,999,!,,I,,|,/

DATA {ZFT(l,9},l=l,15)/+915,,945,o962,,9@_,e973,,97b,,979,,g80,

|,QS2,,9_4,,9_7,,990,,993,,996,j999/

DATA (Z_T( 1,4), l=l +15)/,b69,,902,,_2a,,937,,945,,950,,955,,960,

|,966,,97l,,977,,983,,986,,989,,99l/

DATA (ZFT(I,_),I=I,|5)/,775,.820,,854,,87B,,898,,gI2,,929,,937,

1,946,,953,,963,,g7|,,978.,9S4,,988/

KK=I

AN ADJUSTMENT FOR CP AND CT FOR AF

DO 120 K=l,2

CALL UNINT (6,AFVAL(I.},AFCPCII,K),AFT.AFCP(K),LIMIT)

CALL UNINT (t+AFvAL(I).AFCTC(I.K),AFT,AFCT(K)oLIMIT)

CONTINUE

DO lO0 K=3,7

AFCP(K)=AFcP(2)

AFCT(K)=AFCT(2 }

CALL uNINT(?,ZJJ,AFCP,ZJI.AFCPE,LIMIT)

CALL UNINT(7,ZJJ,AFCT,ZJI.AFCTEQLIMIT)

IF(KIMIT.£Q.7710) GO TO 600

ILIM=O

ITEST=O

CONTINUE

NB= 8LADT+.I

LMOO=MODINB,2)÷|

GO TO (160,180),LMOD

NBB=I

L=BLADT/2,+,I

GO TO 200

NBB=4

L=I

DO 500 IBB=I,NB8

J INTERPOLATION

DO 300 K=I,7

IFIIw-I) 210,210,250

CPE=CP_AFCPIK)

CALL uNINT (INN(K)tCPANG(I,K,L)ICTANGII+K,L),CPEqCTT(K}oLIMIT)

CALL UNINT (INN(K),CPANG(I,K.L),BLDANG(I,K)oCPE,BLLCK),LIMIT)

IF(LIMIT,EQ,O) GO TO 211

FIGURE 6D. LISTING OF ADVANCED GENERAL AVIATION PROPELLER PROGRAM (PAGE 1 ! OF 14)
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C*

ILIM=99

IF(ITEST,EO,7710) CTT(K)=99999,

211 CONTINUE

CTT(K)=CTT(K)/AFCT(K)

GO TO 300

250 CTE=CTIAFCT(K)

CALL uNINT(INN(K)tCTANG(|IKiL)ICPANG(lqK.L)ICTEqCPP(K)o LIMIT|

CALL uNINT(INN(K).CTANG(I.KQLIoBLDARG(I,K)iCTEeBLL(K)ILIMIT$

IF'(LIHIToEQo0) GO TO 251

ILIM:99

IF(ITEsT.EOeT?I0) CPP(K)=99999o

25| CONTINUE

CPP(K)=CPP(K)/AFCP(K) .;

300 CONTINUE

CALL UNINT (?,ZJJ(I),BLL(I)oZJIoBLLL(IBB),LI MIT)

BLLLL=BLLL(IBB)

IF(Iw-l)310_310,350

310 CALL UNINT (?,ZJJ(I)_CTT(I),ZJI,CTTT(IBB),LIMIT)

CT=CTTT(IBB)

GO TO 360

350 CALL UNINT (?,ZdJiI }.CPPtl ).ZJIICPPP(1BB)*LIM IT)

CP=CPPP(IBB)

360 L=L+I

C COMPRESSIBILITy CORRECTION

CALL UNINT (B,zJCL(1),ZMCRL(1)*ZJI,ZHC_T,LIMIT)

DMN=ZMs-zMCRT

IF (DMN) 460,_60,410

410 IF(Iw-I)440,420,440

420 LK:L-I

CALL uNINT ( IA,CPEC(1),BLDCRII,LK),CPE,PBL,IMITI )

CPEE=CPE*PBL

DO _30 IK=I,5

CALL uNINT (IS,CPEEL(I)_ZFT(I tIK)QCPEEqxFFT(IK)tIMIT2)

430 CONTINUE

CALL uNINT(5,ZHMMC(1),xFFT(I).DMNiXFT.LIMIT)

CT=CT*XFT

GO TO 500

440 WRITE (6,450)

450 FORMAT ( 0 NO cOMPREsSIBILITY ADJUSTMENT FOR THRUST INPUT OPTION

xAT P_ESENT o I

460 XFT=Io0

500 CONTINUE

IF(NBB-I) 510i_90,510

510 CALL UNINT (4,×LB(I)_BLLL(II,BLADT,BLLLL,LIMIT)

IF(Iw-I)520,520,530

520 CALL UNINT (4,xLB(1),CTTT(1)oBLADT,CToLIMIT)

GO TO 590

530 CALL uNINT (41xLB(|)_CPPP(|),BLADT*CP, LIMITI

590 CONTINUE

IF(ILIM.NE,99) GO TO 800

.: |F(ITEsTeEQ,7?I0) GO TO 591
ITEST=7?10

sAvCP=CP

sAVCT=CT

GO TO 119

591 CONTINUE

|FIABs(sAvCP/CP-IeO)eLTeeO01) GO TO 592

CPAST=ASTEI_K

592 IF(ABs(sAVCT/CT-IeO)oLT,oO01) GO TO 593

CTAST=ASTE_K

i

/

FIGURE 6Do LISTING OF ADVANCED GENERAL AVIATION PROPELLER PROGRAM (PAGE 12 OF 14)

"i i97



993 CONTINUE

CP=SAvCP

CT=SAVCT

600 CONTINUE

CPE=CP*AFCPE

CTE=CT*AFCTE

• RETURN

END

tl FOR.uNINT

C

lO

C

SuBROuTINE uNINT ( Nt xA• yA• X • Y• L)

C

2OO

C

220

C

24O

C

250

3OO

400

C

C

. .vk

THIs ROUTINE INTERPOLATES OvER A 4 POINT INTERVAL USING A

VARIATION OF 2ND DEGREE INTERPGLATION TO PRODUCE A CONTINUITY

OF SLOPE BETWEEN ADJACENT INTERVALS.,

DIMENSION xA(1)• yA(I), D(4)t P(5)

L=O

I:l

TEST FOR OFF LOW END NO = YEs

IF ( xA(I)- X ) 100, 150i I0

L=I

GO TO 150

I00 00 120 I=2.N

IF ( xA(|I-X} 120• 1501 200

120 CONTINUE

OFF HIGH END

I = N

L= 2

150 Y= YA(I)

GO TO 999

TEST FOR FIRST INTERVAL

IF(I-2} 240,220.240

FIRST INTERVAL

JXI = I

RA = Io

GO TO 400

TEST FOR LAsT INTERVAL

IF(I--N) 300• 250t 300

LAST INTERVAL

Jxl = N--3

RA = Oe

GO TO 400

Jxl = I-2

RA =-cxA(1)-X) /(xAIII-xA(I-I) )

RB = I, -- RA

GET COEFFICIENTS AND RESULTS

J = JXl

; DO 500 I=1,3

PlI) = xAIJ+I) - XA(JI

DII) = X - XA(J)

500 J = J+l

O(4| = X -- xA(J)

PI4} = PI1) ÷ Pl2)

: PlSI = PIE) + DI3)

C RESULT
y =" yA(Jx|) _ RA/P(I) * DI2)/P(4) * Ol3) +

I YAIJXI+II I I-RA/P(I) * Dll)/P(2) * D(3} + RB/P(2) * D(3)/P(5)

2 t0(4)) + yAlJxl+2) *(RA/P(Z) * D(I)/P(4) I D(2I -- RB/P(2)

3 _ D(2)/P(3) * DI4)) + YAIJxI+3) e RB/PlS) * D(2)/P(3} * Ol3)

FIGURE 6D. LISTING OF ADVANCED GENERAL AVIATION PROPELLER PROGRAM (PAGE 13 OF 14)
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APPENDIX E
I

ADVANCED BLADE SHELL MATERIAL SYSTEM CONCEPTS

_The current process for fabrication of fiberglass cloth reinforced epoxy resin blade

shell cover sI:ock for use in lightweight blade construction consists of the following indi-

vidtlal time-consuming steps:
I
I
!The required glass cloth reinforcement and resin binder are initially combined via

a wet la_Ip technique on an airfoil tool mandrel. Final part fabrication is then

accomplished via a vacuum pressure bag method. The semi-finished glass/resin

composite is then subjected to a post-cure, followed by post-fabrication machining

and subsequent preparation• for adhesive bonding to the metal structural spar mem-

ber.

The advantage of this method of blade shell cover stock fabrication is the one-piece

airfoil construction which requires adhesive bonding only at the tip and trailing edges to

form the final airfoil shape which is accomplished concurrently with bonding the shell to

the spar.

When assessed on the basis of cost and technical .considerations, the present cover

stock fabrication method has the following disadvantages which are directly related to the

mmmal, wet layup aspects of the cover stock material system (#181 glass cloth/ERL-

2256-Ton.x) used:

1. Cost - Because of the tight weave of #181 style cloth, excessive time and labor

are expended in uniformly wetting the fabric with resin.

. Technical - Because of the individual operator skill factor involved in the wet

layup phase, the time required and the resultant glass/resin ratio achieved

in final part fabrication varies.

With this in mind, it becomes apparent that significant cost reductions in lightweight

propeller blade fabrication can only be realized if changes in shell cover stock prepara-

tion can be made. It is believed that segmentation of shell cover stock into two halves

is possible, making available a range of material systems which are readily adaptable

to automated fabrication methods (fig. 1E). Segmentation of the blade shell into two

components immediately suggests that a glass cloth/resin prepreg system could be used

with matched die molds to eliminate the manual wet layup process. Table 1D lists sev-

eral other material systems presently available for use in developing a low-cost blade

shell for 1980. These include bulk molding compounds available in sheet form with

oriented reinforcement fibers which can be easily compression molded in matched dies.

Prepreg and preform systems are also listed as being applicable to shell fabrication.

/
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these systems require developmentprograms to orient the reinforcement fibers in a

'direction to offer maximum stren_h in the direction of stresses in the shell.

To further reduce process time and cost, it would be desirable to use stamping

processes, similar to sheet metal forming, to fabricate reinforced plastic blade shell

components. Allied Chemical Company offers a new thermoset-thermoplastic laminate

thati can be readily cold formed to deep drawn configurations in a stamping press then
subjlected to an oven cure to complete the part. 3M Corporation offers a high tempera-

_ur_ thermoplastic resin (aromatic polysulfate ester) which can be readily formed at
700°F in seconds in a matched die mold then bonded to the aluminum blade core. These

stamp forming materials are relatively new and costly at this time, but by 1980 costs

are ex_pected to be reduced to levels that coupled with simple automated forming tech-

:niques will result in lowest cost shell components.

Current manufacturing methods for the solid aluminum blade core (chemical-milled

forgings) represent the lowest costs for 1980 as well.
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